The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Bilinear operators associated with Schrödinger operators”

Hardy spaces H¹ for Schrödinger operators with certain potentials

Jacek Dziubański, Jacek Zienkiewicz (2004)

Studia Mathematica

Similarity:

Let K t t > 0 be the semigroup of linear operators generated by a Schrödinger operator -L = Δ - V with V ≥ 0. We say that f belongs to H ¹ L if | | s u p t > 0 | K t f ( x ) | | | L ¹ ( d x ) < . We state conditions on V and K t which allow us to give an atomic characterization of the space H ¹ L .

Order bounded composition operators on the Hardy spaces and the Nevanlinna class

Nizar Jaoua (1999)

Studia Mathematica

Similarity:

We study the order boundedness of composition operators induced by holomorphic self-maps of the open unit disc D. We consider these operators first on the Hardy spaces H p 0 < p < ∞ and then on the Nevanlinna class N. Given a non-negative increasing function h on [0,∞[, a composition operator is said to be X,Lh-order bounded (we write (X,Lh)-ob) with X = H p or X = N if its composition with the map f ↦ f*, where f* denotes the radial limit of f, is order bounded from X into L h . We give...

Generalized Cesàro operators on certain function spaces

Sunanda Naik (2010)

Annales Polonici Mathematici

Similarity:

Motivated by some recent results by Li and Stević, in this paper we prove that a two-parameter family of Cesàro averaging operators b , c is bounded on the Dirichlet spaces p , a . We also give a short and direct proof of boundedness of b , c on the Hardy space H p for 1 < p < ∞.

Some estimates for commutators of Riesz transform associated with Schrödinger type operators

Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let 1 = - Δ + V be a Schrödinger operator and let 2 = ( - Δ ) 2 + V 2 be a Schrödinger type operator on n ( n 5 ) , where V 0 is a nonnegative potential belonging to certain reverse Hölder class B s for s n / 2 . The Hardy type space H 2 1 is defined in terms of the maximal function with respect to the semigroup { e - t 2 } and it is identical to the Hardy space H 1 1 established by Dziubański and Zienkiewicz. In this article, we prove the L p -boundedness of the commutator b = b f - ( b f ) generated by the Riesz transform = 2 2 - 1 / 2 , where b BMO θ ( ρ ) , which is larger...

Isomorphic properties in spaces of compact operators

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

On hyponormal operators in Krein spaces

Kevin Esmeral, Osmin Ferrer, Jorge Jalk, Boris Lora Castro (2019)

Archivum Mathematicum

Similarity:

In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators T for which there exists a fundamental decomposition 𝕂 = 𝕂 + 𝕂 - of the Krein space 𝕂 with 𝕂 + and 𝕂 - invariant under T .

The Embeddability of c₀ in Spaces of Operators

Ioana Ghenciu, Paul Lewis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space K w * ( X * , Y ) , as well as the complementation of the space K w * ( X * , Y ) of w*-w compact operators in the space L w * ( X * , Y ) of w*-w operators from X* to Y.

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Similarity:

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

Similarity:

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and...

Second order elliptic operators with complex bounded measurable coefficients in  L p , Sobolev and Hardy spaces

Steve Hofmann, Svitlana Mayboroda, Alan McIntosh (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in  L p , Sobolev, and some new Hardy spaces naturally associated to  L . First, we show...

An interpolatory estimate for the UMD-valued directional Haar projection

Richard Lechner

Similarity:

We prove an interpolatory estimate linking the directional Haar projection P ( ε ) to the Riesz transform in the context of Bochner-Lebesgue spaces L p ( ; X ) , 1 < p < ∞, provided X is a UMD-space. If ε i = 1 , the result is the inequality | | P ( ε ) u | | L p ( ; X ) C | | u | | L p ( ; X ) 1 / | | R i u | | L p ( ; X ) 1 - 1 / , (1) where the constant C depends only on n, p, the UMD-constant of X and the Rademacher type of L p ( ; X ) . In order to obtain the interpolatory result (1) we analyze stripe operators S λ , λ ≥ 0, which are used as basic building blocks to dominate the directional Haar projection....

Bounded evaluation operators from H p into q

Martin Smith (2007)

Studia Mathematica

Similarity:

Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by T z , p ( f ) = ( 1 - | z | ² ) 1 / p f ( z ) . Necessary and sufficient conditions on zₙ are given such that T z , p maps the Hardy space H p boundedly into the sequence space q . A corresponding result for Bergman spaces is also stated.

Carleson measures associated with families of multilinear operators

Loukas Grafakos, Lucas Oliveira (2012)

Studia Mathematica

Similarity:

We investigate the construction of Carleson measures from families of multilinear integral operators applied to tuples of L and BMO functions. We show that if the family R t of multilinear operators has cancellation in each variable, then for BMO functions b₁, ..., bₘ, the measure | R t ( b , . . . , b ) ( x ) | ² d x d t / t is Carleson. However, if the family of multilinear operators has cancellation in all variables combined, this result is still valid if b j are L functions, but it may fail if b j are unbounded BMO functions, as...

Spaces of compact operators on C ( 2 × [ 0 , α ] ) spaces

Elói Medina Galego (2011)

Colloquium Mathematicae

Similarity:

We classify, up to isomorphism, the spaces of compact operators (E,F), where E and F are the Banach spaces of all continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological products of Cantor cubes 2 and intervals of ordinal numbers [0,α].

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

Similarity:

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

Multiplication operators on L ( L p ) and p -strictly singular operators

William Johnson, Gideon Schechtman (2008)

Journal of the European Mathematical Society

Similarity:

A classification of weakly compact multiplication operators on L ( L p ) , 1<p< , i s g i v e n . T h i s a n s w e r s a q u e s t i o n r a i s e d b y S a k s m a n a n d T y l l i i n 1992 . T h e c l a s s i f i c a t i o n i n v o l v e s t h e c o n c e p t o f p - s t r i c t l y s i n g u l a r o p e r a t o r s , a n d w e a l s o i n v e s t i g a t e t h e s t r u c t u r e o f g e n e r a l p - s t r i c t l y s i n g u l a r o p e r a t o r s o n Lp . T h e m a i n r e s u l t i s t h a t i f a n o p e r a t o r T o n Lp , 1<p<2 , i s p - s t r i c t l y s i n g u l a r a n d T|X i s a n i s o m o r p h i s m f o r s o m e s u b s p a c e X o f Lp , t h e n X e m b e d s i n t o Lr f o r a l l r<2 , b u t X n e e d n o t b e i s o m o r p h i c t o a H i l b e r t s p a c e . It is also shown that if T is convolution by a biased coin on L p of the Cantor group, 1 p < 2 , and T | X is an isomorphism for some reflexive subspace X of L p , then X is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.