Displaying similar documents to “An alternative polynomial Daugavet property”

Root location for the characteristic polynomial of a Fibonacci type sequence

Zhibin Du, Carlos Martins da Fonseca (2023)

Czechoslovak Mathematical Journal

Similarity:

We analyse the roots of the polynomial x n - p x n - 1 - q x - 1 for p q 1 . This is the characteristic polynomial of the recurrence relation F k , p , q ( n ) = p F k , p , q ( n - 1 ) + q F k , p , q ( n - k + 1 ) + F k , p , q ( n - k ) for n k , which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

Weak polynomial identities and their applications

Vesselin Drensky (2021)

Communications in Mathematics

Similarity:

Let R be an associative algebra over a field K generated by a vector subspace V . The polynomial f ( x 1 , ... , x n ) of the free associative algebra K x 1 , x 2 , ... is a weak polynomial identity for the pair ( R , V ) if it vanishes in R when evaluated on V . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of...

Heights of squares of Littlewood polynomials and infinite series

Artūras Dubickas (2012)

Annales Polonici Mathematici

Similarity:

Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let A m be the mth coefficient of the square f(x)² of...

On the proof of Erdős' inequality

Lai-Yi Zhu, Da-Peng Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality p ' [ - 1 , 1 ] 1 2 p [ - 1 , 1 ] for a constrained polynomial p of degree at most n , initially claimed by P. Erdős, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval ( - 1 , 1 ) and establish a new asymptotically sharp inequality. ...

A set on which the Łojasiewicz exponent at infinity is attained

Jacek Chądzyński, Tadeusz Krasiński (1997)

Annales Polonici Mathematici

Similarity:

We show that for a polynomial mapping F = ( f , . . . , f ) : n m the Łojasiewicz exponent ( F ) of F is attained on the set z n : f ( z ) · . . . · f ( z ) = 0 .

Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials

Didier D&amp;#039;Acunto, Krzysztof Kurdyka (2005)

Annales Polonici Mathematici

Similarity:

Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that | f | C | f | ϱ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than 1 - R ( n , d ) - 1 with R ( n , d ) = d ( 3 d - 3 ) n - 1 .

Extending piecewise polynomial functions in two variables

Andreas Fischer, Murray Marshall (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We study the extensibility of piecewise polynomial functions defined on closed subsets of 2 to all of 2 . The compact subsets of 2 on which every piecewise polynomial function is extensible to 2 can be characterized in terms of local quasi-convexity if they are definable in an o-minimal expansion of . Even the noncompact closed definable subsets can be characterized if semialgebraic function germs at infinity are dense in the Hardy field of definable germs. We also present a piecewise...

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) >...

Polynomial quotients: Interpolation, value sets and Waring's problem

Zhixiong Chen, Arne Winterhof (2015)

Acta Arithmetica

Similarity:

For an odd prime p and an integer w ≥ 1, polynomial quotients q p , w ( u ) are defined by q p , w ( u ) ( u w - u w p ) / p m o d p with 0 q p , w ( u ) p - 1 , u ≥ 0, which are generalizations of Fermat quotients q p , p - 1 ( u ) . First, we estimate the number of elements 1 u < N p for which f ( u ) q p , w ( u ) m o d p for a given polynomial f(x) over the finite field p . In particular, for the case f(x)=x we get bounds on the number of fixed points of polynomial quotients. Second, before we study the problem of estimating the smallest number (called the Waring number) of summands needed to express each...

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Similarity:

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

Hodge type decomposition

Wojciech Kozłowski (2007)

Annales Polonici Mathematici

Similarity:

In the space Λ p of polynomial p-forms in ℝⁿ we introduce some special inner product. Let H p be the space of polynomial p-forms which are both closed and co-closed. We prove in a purely algebraic way that Λ p splits as the direct sum d * ( Λ p + 1 ) δ * ( Λ p - 1 ) H p , where d* (resp. δ*) denotes the adjoint operator to d (resp. δ) with respect to that inner product.

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

On nonsingular polynomial maps of ℝ²

Nguyen Van Chau, Carlos Gutierrez (2006)

Annales Polonici Mathematici

Similarity:

We consider nonsingular polynomial maps F = (P,Q): ℝ² → ℝ² under the following regularity condition at infinity ( J ) : There does not exist a sequence ( p k , q k ) ² of complex singular points of F such that the imaginary parts ( ( p k ) , ( q k ) ) tend to (0,0), the real parts ( ( p k ) , ( q k ) ) tend to ∞ and F ( ( p k ) , ( q k ) ) ) a ² . It is shown that F is a global diffeomorphism of ℝ² if it satisfies Condition ( J ) and if, in addition, the restriction of F to every real level set P - 1 ( c ) is proper for values of |c| large enough.

Determination of a type of permutation trinomials over finite fields

Xiang-dong Hou (2014)

Acta Arithmetica

Similarity:

Let f = a x + b x q + x 2 q - 1 q [ x ] . We find explicit conditions on a and b that are necessary and sufficient for f to be a permutation polynomial of q ² . This result allows us to solve a related problem: Let g n , q p [ x ] (n ≥ 0, p = c h a r q ) be the polynomial defined by the functional equation c q ( x + c ) n = g n , q ( x q - x ) . We determine all n of the form n = q α - q β - 1 , α > β ≥ 0, for which g n , q is a permutation polynomial of q ² .

On a generalization of the Beiter Conjecture

Bartłomiej Bzdęga (2016)

Acta Arithmetica

Similarity:

We prove that for every ε > 0 and every nonnegative integer w there exist primes p 1 , . . . , p w such that for n = p 1 . . . p w the height of the cyclotomic polynomial Φ n is at least ( 1 - ε ) c w M n , where M n = i = 1 w - 2 p i 2 w - 1 - i - 1 and c w is a constant depending only on w; furthermore l i m w c w 2 - w 0 . 71 . In our construction we can have p i > h ( p 1 . . . p i - 1 ) for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.

Polynomial Imaginary Decompositions for Finite Separable Extensions

Adam Grygiel (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u , . . . , u m - 1 K [ X , . . . , X m - 1 ] such that f ( j = 0 m - 1 ξ j X j ) = j = 0 m - 1 ξ j u j . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then u , . . . , u m - 1 have no common divisor in K [ X , . . . , X m - 1 ] of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several...

Hilbert series of the Grassmannian and k -Narayana numbers

Lukas Braun (2019)

Communications in Mathematics

Similarity:

We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the q -Hilbert series is a Vandermonde-like determinant. We show that the h -polynomial of the Grassmannian coincides with the k -Narayana polynomial. A simplified formula for the h -polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the k -Narayana numbers,...

Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

Sparsity of the intersection of polynomial images of an interval

Mei-Chu Chang (2014)

Acta Arithmetica

Similarity:

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let f ( x ) , g ( x ) p [ x ] be polynomials of degrees d and e with d ≥ e ≥ 2. Suppose M ∈ ℤ satisfies p 1 / E ( 1 + κ / ( 1 - κ ) > M > p ε , where E = e(e+1)/2 and κ = (1/d - 1/d²) (E-1)/E + ε. Assume f(x)-g(y) is absolutely irreducible. Then | f ( [ 0 , M ] ) g ( [ 0 , M ] ) | M 1 - ε .