Some properties of the class of arithmetic functions
R. P. Pakshirajan (1963)
Annales Polonici Mathematici
Similarity:
R. P. Pakshirajan (1963)
Annales Polonici Mathematici
Similarity:
Antonio M. Oller-Marcén (2017)
Mathematica Bohemica
Similarity:
A homothetic arithmetic function of ratio is a function such that for every . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of in terms of the period and the ratio of .
Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)
Czechoslovak Mathematical Journal
Similarity:
Let and . Denote by the set of all integers whose canonical prime representation has all exponents being a multiple of or belonging to the arithmetic progression , . All integers in are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...
Atsushi Moriwaki (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
In this paper, we give a numerical characterization of nef arithmetic -Cartier divisors of -type on an arithmetic surface. Namely an arithmetic -Cartier divisor of -type is nef if and only if is pseudo-effective and .
Jian-Ping Fang (2016)
Czechoslovak Mathematical Journal
Similarity:
We derive two identities for multiple basic hyper-geometric series associated with the unitary group. In order to get the two identities, we first present two known -exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two -Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial...
Laurent Habsieger, Xavier-François Roblot (2006)
Acta Arithmetica
Similarity:
Liuying Wu (2024)
Czechoslovak Mathematical Journal
Similarity:
Let denote a positive integer with at most prime factors, counted according to multiplicity. For integers , such that , let denote the least in the arithmetic progression . It is proved that for sufficiently large , we have This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained
Przemysław Mazur (2015)
Acta Arithmetica
Similarity:
We prove that every set A ⊂ ℤ satisfying for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that .
Jhon J. Bravo, Jose L. Herrera, Florian Luca (2021)
Mathematica Bohemica
Similarity:
The Pell sequence is the second order linear recurrence defined by with initial conditions and . In this paper, we investigate a generalization of the Pell sequence called the -generalized Pell sequence which is generated by a recurrence relation of a higher order. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers...
Watcharapon Pimsert, Teerapat Srichan, Pinthira Tangsupphathawat (2023)
Czechoslovak Mathematical Journal
Similarity:
We use the estimation of the number of integers such that belongs to an arithmetic progression to study the coprimality of integers in , , .
Melvyn B. Nathanson, Kevin O'Bryant (2015)
Acta Arithmetica
Similarity:
A geometric progression of length k and integer ratio is a set of numbers of the form for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence of positive real numbers with a₁ = 1 such that the set contains no geometric progression of length k and integer ratio. Moreover, is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that...
Victor J. W. Guo (2018)
Czechoslovak Mathematical Journal
Similarity:
We give a new and elementary proof of Jackson’s terminating -analogue of Dixon’s identity by using recurrences and induction.
Curtis Cooper (2015)
Colloquium Mathematicae
Similarity:
Melham discovered the Fibonacci identity . He then considered the generalized sequence Wₙ where W₀ = a, W₁ = b, and and a, b, p and q are integers and q ≠ 0. Letting e = pab - qa² - b², he proved the following identity: . There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: . We prove similar identities. For example, a generalization of Fairgrieve and Gould’s identity is .
Enrique González-Jiménez (2015)
Acta Arithmetica
Similarity:
Let and a,q ∈ ℚ. Denote by the set of rational numbers d such that a, a + q, ..., a + (m-1)q form an arithmetic progression in the Edwards curve . We study the set and we parametrize it by the rational points of an algebraic curve.
Janusz Matkowski (2013)
Colloquium Mathematicae
Similarity:
A generalization of the weighted quasi-arithmetic mean generated by continuous and increasing (decreasing) functions , k ≥ 2, denoted by , is considered. Some properties of , including “associativity” assumed in the Kolmogorov-Nagumo theorem, are shown. Convex and affine functions involving this type of means are considered. Invariance of a quasi-arithmetic mean with respect to a special mean-type mapping built of generalized means is applied in solving a functional equation. For...
Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The Golomb space is the set of positive integers endowed with the topology generated by the base consisting of arithmetic progressions with coprime . We prove that the Golomb space is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.