Displaying similar documents to “The deformation relation on the set of Cohen-Macaulay modules on a quotient surface singularity”

Gorenstein star modules and Gorenstein tilting modules

Peiyu Zhang (2021)

Czechoslovak Mathematical Journal

Similarity:

We introduce the notion of Gorenstein star modules and obtain some properties and a characterization of them. We mainly give the relationship between n -Gorenstein star modules and n -Gorenstein tilting modules, see L. Yan, W. Li, B. Ouyang (2016), and a new characterization of n -Gorenstein tilting modules.

On the structure of sequentially Cohen-Macaulay bigraded modules

Leila Parsaei Majd, Ahad Rahimi (2015)

Czechoslovak Mathematical Journal

Similarity:

Let K be a field and S = K [ x 1 , ... , x m , y 1 , ... , y n ] be the standard bigraded polynomial ring over K . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” S -modules with respect to Q = ( y 1 , ... , y n ) . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to Q are considered.

Finiteness Theorems for Deformations of Complexes

Frauke M. Bleher, Ted Chinburg (2013)

Annales de l’institut Fourier

Similarity:

We consider deformations of bounded complexes of modules for a profinite group G over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of G -modules that is strictly perfect over the associated versal deformation ring.

n -strongly Gorenstein graded modules

Zenghui Gao, Jie Peng (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a graded ring and n 1 an integer. We introduce and study n -strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that n -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be m -strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever n > m . Many properties of the n -strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized....

(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras

Chao Wang, Xiao Yan Yang (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Λ = A M 0 B be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective Λ -modules under the condition that M is a cocompatible ( A , B ) -bimodule, we establish a recollement of the stable category Ginj ( Λ ) ¯ . We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over Λ .

μ -constant monodromy groups and marked singularities

Claus Hertling (2011)

Annales de l’institut Fourier

Similarity:

μ -constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo ± id . Second, marked singularities are defined and global moduli...

Top-stable and layer-stable degenerations and hom-order

S. O. Smalø, A. Valenta (2007)

Colloquium Mathematicae

Similarity:

Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration M < d e g N such that t M / t + 1 M t N / t + 1 N for all t. Given a module M with square-free top and a projective cover P, she showed that d i m k H o m ( M , M ) = d i m k H o m ( P , M ) if and only if M has no proper degeneration M < d e g N where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from...

On the composition structure of the twisted Verma modules for 𝔰𝔩 ( 3 , )

Libor Křižka, Petr Somberg (2015)

Archivum Mathematicum

Similarity:

We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra 𝔰𝔩 ( 3 , ) , including the explicit structure of singular vectors for both 𝔰𝔩 ( 3 , ) and one of its Lie subalgebras 𝔰𝔩 ( 2 , ) , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as D -modules on the Schubert cells in the full flag manifold for SL ( 3 , ) .

Lifting D -modules from positive to zero characteristic

João Pedro P. dos Santos (2011)

Bulletin de la Société Mathématique de France

Similarity:

We study liftings or deformations of D -modules ( D is the ring of differential operators from EGA IV) from positive characteristic to characteristic zero using ideas of Matzat and Berthelot’s theory of arithmetic D -modules. We pay special attention to the growth of the differential Galois group of the liftings. We also apply formal deformation theory (following Schlessinger and Mazur) to analyze the space of all liftings of a given D -module in positive characteristic. At the end we compare...

n - gr -coherent rings and Gorenstein graded modules

Mostafa Amini, Driss Bennis, Soumia Mamdouhi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a graded ring and n 1 be an integer. We introduce and study the notions of Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules by using the notion of special finitely presented graded modules. On n -gr-coherent rings, we investigate the relationships between Gorenstein n -FP-gr-injective and Gorenstein n -gr-flat modules. Among other results, we prove that any graded module in R -gr (or gr- R ) admits a Gorenstein n -FP-gr-injective (or Gorenstein n -gr-flat) cover and preenvelope,...

Category 𝒪 for quantum groups

Henning Haahr Andersen, Volodymyr Mazorchuk (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we study the BGG-categories 𝒪 q associated to quantum groups. We prove that many properties of the ordinary BGG-category 𝒪 for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan-Lusztig conjectures for 𝒪 and for finite dimensional U q -modules we are able...

Non-weight modules over the super Schrödinger algebra

Xinyue Wang, Liangyun Chen, Yao Ma (2024)

Czechoslovak Mathematical Journal

Similarity:

We construct a family of non-weight modules which are free U ( 𝔥 ) -modules of rank 2 over the N = 1 super Schrödinger algebra in ( 1 + 1 ) -dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free U ( 𝔥 ) -modules of rank 2 over 𝔬𝔰𝔭 ( 1 | 2 ) are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.

Springer fiber components in the two columns case for types A and D are normal

Nicolas Perrin, Evgeny Smirnov (2012)

Bulletin de la Société Mathématique de France

Similarity:

We study the singularities of the irreducible components of the Springer fiber over a nilpotent element N with N 2 = 0 in a Lie algebra of type A or D (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.

Obstructions for deformations of complexes

Frauke M. Bleher, Ted Chinburg (2013)

Annales de l’institut Fourier

Similarity:

We develop two approaches to obstruction theory for deformations of derived isomorphism classes of complexes of modules for a profinite group G over a complete local Noetherian ring A of positive residue characteristic.