Displaying similar documents to “Extenders for vector-valued functions”

Separated sequences in uniformly convex Banach spaces

J. M. A. M. van Neerven (2005)

Colloquium Mathematicae

Similarity:

We give a characterization of uniformly convex Banach spaces in terms of a uniform version of the Kadec-Klee property. As an application we prove that if (xₙ) is a bounded sequence in a uniformly convex Banach space X which is ε-separated for some 0 < ε ≤ 2, then for all norm one vectors x ∈ X there exists a subsequence ( x n j ) of (xₙ) such that i n f j k | | x - ( x n j - x n k ) | | 1 + δ X ( 2 / 3 ε ) , where δ X is the modulus of convexity of X. From this we deduce that the unit sphere of every infinite-dimensional uniformly convex Banach space...

Topological games and product spaces

Salvador García-Ferreira, R. A. González-Silva, Artur Hideyuki Tomita (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we deal with the product of spaces which are either 𝒢 -spaces or 𝒢 p -spaces, for some p ω * . These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are 𝒢 -spaces, and every 𝒢 p -space is a 𝒢 -space, for every p ω * . We prove that if { X μ : μ < ω 1 } is a set of spaces whose product X = μ < ω 1 X μ is a 𝒢 -space, then there is A [ ω 1 ] ω such that X μ is countably compact for every μ ω 1 A . As a consequence, X ω 1 is a 𝒢 -space iff X ω 1 is countably compact, and if X 2 𝔠 is a 𝒢 -space,...

Infinite games and chain conditions

Santi Spadaro (2016)

Fundamenta Mathematicae

Similarity:

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf number of the G δ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak...

The extension of the Krein-Šmulian theorem for order-continuous Banach lattices

Antonio S. Granero, Marcos Sánchez (2008)

Banach Center Publications

Similarity:

If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) d ̂ ( c o ¯ w * ( K ) , X ) 2 d ̂ ( K , X ) and, if K ∩ X is w*-dense in K, then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) ; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) ; (iii) if X has a 1-symmetric basis, then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) .

On projectional skeletons in Vašák spaces

Ondřej F. K. Kalenda (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full 1 -projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.

Lindelöf indestructibility, topological games and selection principles

Marion Scheepers, Franklin D. Tall (2010)

Fundamenta Mathematicae

Similarity:

Arhangel’skii proved that if a first countable Hausdorff space is Lindelöf, then its cardinality is at most 2 . Such a clean upper bound for Lindelöf spaces in the larger class of spaces whose points are G δ has been more elusive. In this paper we continue the agenda started by the second author, [Topology Appl. 63 (1995)], of considering the cardinality problem for spaces satisfying stronger versions of the Lindelöf property. Infinite games and selection principles, especially the Rothberger...

Linearization of isometric embedding on Banach spaces

Yu Zhou, Zihou Zhang, Chunyan Liu (2015)

Studia Mathematica

Similarity:

Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and T : s p a n ¯ ( f ( X ) ) X be the Figiel operator with T f = I d X and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when s p a n ¯ ( f ( X ) ) is weakly nearly strictly convex.

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

Reflexivity and approximate fixed points

Eva Matoušková, Simeon Reich (2003)

Studia Mathematica

Similarity:

A Banach space X is reflexive if and only if every bounded sequence xₙ in X contains a norm attaining subsequence. This means that it contains a subsequence x n k for which s u p f S X * l i m s u p k f ( x n k ) is attained at some f in the dual unit sphere S X * . A Banach space X is not reflexive if and only if it contains a normalized sequence xₙ with the property that for every f S X * , there exists g S X * such that l i m s u p n f ( x ) < l i m i n f n g ( x ) . Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded...

On the Banach-Mazur distance between continuous function spaces with scattered boundaries

Jakub Rondoš (2023)

Czechoslovak Mathematical Journal

Similarity:

We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant 2 appearing in the Amir-Cambern theorem may be replaced by 3 for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs...

Universality, complexity and asymptotically uniformly smooth Banach spaces

Ryan M. Causey, Gilles Lancien (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For 1 < p , we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent p -asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case p = .

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

The Dual of a Non-reflexive L-embedded Banach Space Contains l Isometrically

Hermann Pfitzner (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l isometrically.

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

(Non-)amenability of ℬ(E)

Volker Runde (2010)

Banach Center Publications

Similarity:

In 1972, the late B. E. Johnson introduced the notion of an amenable Banach algebra and asked whether the Banach algebra ℬ(E) of all bounded linear operators on a Banach space E could ever be amenable if dim E = ∞. Somewhat surprisingly, this question was answered positively only very recently as a by-product of the Argyros-Haydon result that solves the “scalar plus compact problem”: there is an infinite-dimensional Banach space E, the dual of which is ℓ¹, such that ( E ) = ( E ) + i d E . Still, ℬ(ℓ²) is...

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

A note on a class of homeomorphisms between Banach spaces

Piotr Fijałkowski (2005)

Colloquium Mathematicae

Similarity:

This paper deals with homeomorphisms F: X → Y, between Banach spaces X and Y, which are of the form F ( x ) : = F ̃ x ( 2 n + 1 ) where F ̃ : X 2 n + 1 Y is a continuous (2n+1)-linear operator.

Countably convex G δ sets

Vladimir Fonf, Menachem Kojman (2001)

Fundamenta Mathematicae

Similarity:

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets...

On the existence of non-linear frames

Shah Jahan, Varinder Kumar, S.K. Kaushik (2017)

Archivum Mathematicum

Similarity:

A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if 𝒳 is a Banach space such that 𝒳 * has a SRBF, then 𝒳 has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space 𝒳 has an approximative Schauder frame, then 𝒳 * has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Similarity:

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

On the Variational Inequality and Tykhonov Well-Posedness in Game Theory

C. A. Pensavalle, G. Pieri (2010)

Bollettino dell'Unione Matematica Italiana

Similarity:

Consider a M-player game in strategic form G = ( X 1 , , X M , g 1 , , g M ) where the set X i is a closed interval of real numbers and the payoff function g i is concave and differentiable with respect to the variable x i X i , for any i = 1 , , M . The aim of this paper is to find appropriate conditions on the payoff functions under the well-posedness with respect to the related variational inequality is equivalent to the formulation of the Tykhonov well-posedness in a game context. The idea of the proof is to appeal to a third equivalence,...

Embeddings of C(K) spaces into C(S,X) spaces with distortion strictly less than 3

Leandro Candido, Elói Medina Galego (2013)

Fundamenta Mathematicae

Similarity:

In the spirit of the classical Banach-Stone theorem, we prove that if K and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then the existence of an isomorphism T from C(K, X) onto C(S,X) with distortion | | T | | | | T - 1 | | strictly less than 3 implies that some finite topological sum of K is homeomorphic to some finite topological sum of S. Moreover, if Xⁿ contains no subspace isomorphic to X n + 1 for every n ∈ ℕ, then K is homeomorphic to S. In other words, we obtain a vector-valued...