The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On lifts of projectable-projectable classical linear connections to the cotangent bundle”

Lagrangians and Euler morphisms on fibered-fibered frame bundles from projectable-projectable classical linear connections

Anna Bednarska (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We classify all 2 m 1 , m 2 , n 1 , n 2 -natural operators A transforming projectable-projectable torsion-free classical linear connections on fibered-fibered manifolds Y of dimension ( m 1 , m 2 , n 1 , n 2 ) into r th order Lagrangians A ( r ) on the fibered-fibered linear frame bundle L f i b - f i b ( Y ) on Y . Moreover, we classify all 2 m 1 , m 2 , n 1 , n 2 -natural operators B transforming projectable-projectable torsion-free classical linear connections r on fiberedfibered manifolds Y of dimension  ( m 1 , m 2 , n 1 , n 2 ) into Euler morphism B ( ) on L f i b - f i b ( Y ) . These classifications can be expanded on...

Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital C * -algebras

Kazunori Kodaka (2022)

Mathematica Bohemica

Similarity:

Let 𝒜 = { A t } t G and = { B t } t G be C * -algebraic bundles over a finite group G . Let C = t G A t and D = t G B t . Also, let A = A e and B = B e , where e is the unit element in G . We suppose that C and D are unital and A and B have the unit elements in C and D , respectively. In this paper, we show that if there is an equivalence 𝒜 - -bundle over G with some properties, then the unital inclusions of unital C * -algebras A C and B D induced by 𝒜 and are strongly Morita equivalent. Also, we suppose that 𝒜 and are saturated and that A ' C = 𝐂 1 . We show that...

The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš (2017)

Czechoslovak Mathematical Journal

Similarity:

Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

The vertical prolongation of the projectable connections

Anna Bednarska (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We prove that any first order 2 m 1 , m 2 , n 1 , n 2 -natural operator transforming projectable general connections on an ( m 1 , m 2 , n 1 , n 2 ) -dimensional fibred-fibred manifold p = ( p , p ) : ( p Y : Y Y ) ( p M : M M ) into general connections on the vertical prolongation V Y M of p : Y M is the restriction of the (rather well-known) vertical prolongation operator 𝒱 lifting general connections Γ ¯ on a fibred manifold Y M into 𝒱 Γ ¯ (the vertical prolongation of Γ ¯ ) on V Y M .

On almost complex structures from classical linear connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let f m be the category of m -dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on f m . Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱 m be the category of m -dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F : 𝒱 m 𝒱 admitting f m -natural operators J ˜ transforming classical linear connections on m -dimensional manifolds M into almost complex structures J ˜ ( ) on F ( T ) M = x M F ( T x M ) .

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

Steinness of bundles with fiber a Reinhardt bounded domain

Karl Oeljeklaus, Dan Zaffran (2006)

Bulletin de la Société Mathématique de France

Similarity:

Let E denote a holomorphic bundle with fiber D and with basis B . Both D and B are assumed to be Stein. For D a Reinhardt bounded domain of dimension d = 2 or 3 , we give a necessary and sufficient condition on D for the existence of a non-Stein such E (Theorem 1 ); for d = 2 , we give necessary and sufficient criteria for E to be Stein (Theorem 2 ). For D a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for E to be Stein (Theorem...

Complex series and connected sets

B. Jasek

Similarity:

CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO Σ 1 , Σ 2 , Σ 3 , Σ 4 INESSENTIAL RESTRICTIONOF GENERALITY ...............................................................................................................................................................