The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the adjacent eccentric distance sum of graphs”

On double domination in graphs

Jochen Harant, Michael A. Henning (2005)

Discussiones Mathematicae Graph Theory

Similarity:

In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ × 2 ( G ) . A function f(p) is defined, and it is shown that γ × 2 ( G ) = m i n f ( p ) , where the minimum is taken over the n-dimensional cube C = p = ( p , . . . , p ) | p i I R , 0 p i 1 , i = 1 , . . . , n . Using this result, it is then shown that if G has order n with minimum degree δ and average degree d, then γ × 2 ( G ) ( ( l n ( 1 + d ) + l n δ + 1 ) / δ ) n .

On locating-domination in graphs

Mustapha Chellali, Malika Mimouni, Peter J. Slater (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number γ L ( G ) is the minimum cardinality of a LDS of G, and the upper locating-domination number, Γ L ( G ) is the maximum cardinality of a minimal LDS of G. We present different bounds on Γ L ( G ) and γ L ( G ) .

A note on the double Roman domination number of graphs

Xue-Gang Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

For a graph G = ( V , E ) , a double Roman dominating function is a function f : V { 0 , 1 , 2 , 3 } having the property that if f ( v ) = 0 , then the vertex v must have at least two neighbors assigned 2 under f or one neighbor with f ( w ) = 3 , and if f ( v ) = 1 , then the vertex v must have at least one neighbor with f ( w ) 2 . The weight of a double Roman dominating function f is the sum f ( V ) = v V f ( v ) . The minimum weight of a double Roman dominating function on G is called the double Roman domination number of G and is denoted by γ dR ( G ) . In this paper, we establish a new...

Characterizing finite groups whose enhanced power graphs have universal vertices

David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and construct a graph Δ ( G ) by taking G { 1 } as the vertex set of Δ ( G ) and by drawing an edge between two vertices x and y if x , y is cyclic. Let K ( G ) be the set consisting of the universal vertices of Δ ( G ) along the identity element. For a solvable group G , we present a necessary and sufficient condition for K ( G ) to be nontrivial. We also develop a connection between Δ ( G ) and K ( G ) when | G | is divisible by two distinct primes and the diameter of Δ ( G ) is 2.

Degree sums of adjacent vertices for traceability of claw-free graphs

Tao Tian, Liming Xiong, Zhi-Hong Chen, Shipeng Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

The line graph of a graph G , denoted by L ( G ) , has E ( G ) as its vertex set, where two vertices in L ( G ) are adjacent if and only if the corresponding edges in G have a vertex in common. For a graph H , define σ ¯ 2 ( H ) = min { d ( u ) + d ( v ) : u v E ( H ) } . Let H be a 2-connected claw-free simple graph of order n with δ ( H ) 3 . We show that, if σ ¯ 2 ( H ) 1 7 ( 2 n - 5 ) and n is sufficiently large, then either H is traceable or the Ryjáček’s closure cl ( H ) = L ( G ) , where G is an essentially 2 -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10...

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show...

Distance independence in graphs

J. Louis Sewell, Peter J. Slater (2011)

Discussiones Mathematicae Graph Theory

Similarity:

For a set D of positive integers, we define a vertex set S ⊆ V(G) to be D-independent if u, v ∈ S implies the distance d(u,v) ∉ D. The D-independence number β D ( G ) is the maximum cardinality of a D-independent set. In particular, the independence number β ( G ) = β 1 ( G ) . Along with general results we consider, in particular, the odd-independence number β O D D ( G ) where ODD = 1,3,5,....

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.

On upper bounds for total k -domination number via the probabilistic method

Saylí Sigarreta, Saylé Sigarreta, Hugo Cruz-Suárez (2023)

Kybernetika

Similarity:

For a fixed positive integer k and G = ( V , E ) a connected graph of order n , whose minimum vertex degree is at least k , a set S V is a total k -dominating set, also known as a k -tuple total dominating set, if every vertex v V has at least k neighbors in S . The minimum size of a total k -dominating set for G is called the total k -domination number of G , denoted by γ k t ( G ) . The total k -domination problem is to determine a minimum total k -dominating set of G . Since the exact problem is in general quite difficult...

Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma, Yan Ling Shao (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) ....

The Turán number of the graph 3 P 4

Halina Bielak, Sebastian Kieliszek (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

Spanning trees whose reducible stems have a few branch vertices

Pham Hoang Ha, Dang Dinh Hanh, Nguyen Thanh Loan, Ngoc Diep Pham (2021)

Czechoslovak Mathematical Journal

Similarity:

Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T . The set of leaves of T is denoted by L ( T ) and the set of branch vertices of T is denoted by B ( T ) . For two distinct vertices u , v of T , let P T [ u , v ] denote the unique path in T connecting u and v . Let T be a tree with B ( T ) . For each leaf x of T , let y x denote the nearest branch vertex to x . We delete V ( P T [ x , y x ] ) { y x } from T for all x L ( T ) . The resulting subtree of T is called the reducible stem...

Even factor of bridgeless graphs containing two specified edges

Nastaran Haghparast, Dariush Kiani (2018)

Czechoslovak Mathematical Journal

Similarity:

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3 . Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary prescribed edges. They also proved that G has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges e 1 and e 2 of G , there is an even factor containing e 1 and e 2 ...

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...