Displaying similar documents to “On realizability of sign patterns by real polynomials”

Root location for the characteristic polynomial of a Fibonacci type sequence

Zhibin Du, Carlos Martins da Fonseca (2023)

Czechoslovak Mathematical Journal

Similarity:

We analyse the roots of the polynomial x n - p x n - 1 - q x - 1 for p q 1 . This is the characteristic polynomial of the recurrence relation F k , p , q ( n ) = p F k , p , q ( n - 1 ) + q F k , p , q ( n - k + 1 ) + F k , p , q ( n - k ) for n k , which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials

Didier D'Acunto, Krzysztof Kurdyka (2005)

Annales Polonici Mathematici

Similarity:

Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that | f | C | f | ϱ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than 1 - R ( n , d ) - 1 with R ( n , d ) = d ( 3 d - 3 ) n - 1 .

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

Heights of squares of Littlewood polynomials and infinite series

Artūras Dubickas (2012)

Annales Polonici Mathematici

Similarity:

Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let A m be the mth coefficient of the square f(x)² of...

Weak polynomial identities and their applications

Vesselin Drensky (2021)

Communications in Mathematics

Similarity:

Let R be an associative algebra over a field K generated by a vector subspace V . The polynomial f ( x 1 , ... , x n ) of the free associative algebra K x 1 , x 2 , ... is a weak polynomial identity for the pair ( R , V ) if it vanishes in R when evaluated on V . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of...

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Similarity:

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

Symmetric identity for polynomial sequences satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x )

Farid Bencherif, Rachid Boumahdi, Tarek Garici (2021)

Communications in Mathematics

Similarity:

Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x ) with A 0 ( x ) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) >...

Jumps of ternary cyclotomic coefficients

Bartłomiej Bzdęga (2014)

Acta Arithmetica

Similarity:

It is known that two consecutive coefficients of a ternary cyclotomic polynomial Φ p q r ( x ) = k a p q r ( k ) x k differ by at most one. We characterize all k such that | a p q r ( k ) - a p q r ( k - 1 ) | = 1 . We use this to prove that the number of nonzero coefficients of the nth ternary cyclotomic polynomial is greater than n 1 / 3 .

On the proof of Erdős' inequality

Lai-Yi Zhu, Da-Peng Zhou (2017)

Czechoslovak Mathematical Journal

Similarity:

Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality p ' [ - 1 , 1 ] 1 2 p [ - 1 , 1 ] for a constrained polynomial p of degree at most n , initially claimed by P. Erdős, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval ( - 1 , 1 ) and establish a new asymptotically sharp inequality. ...

An alternative polynomial Daugavet property

Elisa R. Santos (2014)

Studia Mathematica

Similarity:

We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies m a x ω | | I d + ω P | | = 1 + | | P | | . We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely L ( μ , X ) and C(K,X), where X has the APDP.

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo (2020)

Czechoslovak Mathematical Journal

Similarity:

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.

Polynomial Imaginary Decompositions for Finite Separable Extensions

Adam Grygiel (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u , . . . , u m - 1 K [ X , . . . , X m - 1 ] such that f ( j = 0 m - 1 ξ j X j ) = j = 0 m - 1 ξ j u j . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then u , . . . , u m - 1 have no common divisor in K [ X , . . . , X m - 1 ] of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several...

Rational solutions of certain Diophantine equations involving norms

Maciej Ulas (2014)

Acta Arithmetica

Similarity:

We present some results concerning the unirationality of the algebraic variety f given by the equation N K / k ( X + α X + α ² X ) = f ( t ) , where k is a number field, K=k(α), α is a root of an irreducible polynomial h(x) = x³ + ax + b ∈ k[x] and f ∈ k[t]. We are mainly interested in the case of pure cubic extensions, i.e. a = 0 and b ∈ k∖k³. We prove that if deg f = 4 and f contains a k-rational point (x₀,y₀,z₀,t₀) with f(t₀)≠0, then f is k-unirational. A similar result is proved for a broad family of quintic polynomials...

Sparsity of the intersection of polynomial images of an interval

Mei-Chu Chang (2014)

Acta Arithmetica

Similarity:

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let f ( x ) , g ( x ) p [ x ] be polynomials of degrees d and e with d ≥ e ≥ 2. Suppose M ∈ ℤ satisfies p 1 / E ( 1 + κ / ( 1 - κ ) > M > p ε , where E = e(e+1)/2 and κ = (1/d - 1/d²) (E-1)/E + ε. Assume f(x)-g(y) is absolutely irreducible. Then | f ( [ 0 , M ] ) g ( [ 0 , M ] ) | M 1 - ε .

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...

A set on which the Łojasiewicz exponent at infinity is attained

Jacek Chądzyński, Tadeusz Krasiński (1997)

Annales Polonici Mathematici

Similarity:

We show that for a polynomial mapping F = ( f , . . . , f ) : n m the Łojasiewicz exponent ( F ) of F is attained on the set z n : f ( z ) · . . . · f ( z ) = 0 .