The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on the double Roman domination number of graphs”

On upper bounds for total k -domination number via the probabilistic method

Saylí Sigarreta, Saylé Sigarreta, Hugo Cruz-Suárez (2023)

Kybernetika

Similarity:

For a fixed positive integer k and G = ( V , E ) a connected graph of order n , whose minimum vertex degree is at least k , a set S V is a total k -dominating set, also known as a k -tuple total dominating set, if every vertex v V has at least k neighbors in S . The minimum size of a total k -dominating set for G is called the total k -domination number of G , denoted by γ k t ( G ) . The total k -domination problem is to determine a minimum total k -dominating set of G . Since the exact problem is in general quite difficult...

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .

The small Ree group 2 G 2 ( 3 2 n + 1 ) and related graph

Alireza K. Asboei, Seyed S. S. Amiri (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G 2 G 2 ( 3 2 n + 1 ) if and only if 𝒮 ( G ) 𝒮 ( 2 G 2 ( 3 2 n + 1 ) ) . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group 2 G 2 ( 3 2 n + 1 ) .

The Turán number of the graph 3 P 4

Halina Bielak, Sebastian Kieliszek (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

Generalized 3-edge-connectivity of Cartesian product graphs

Yuefang Sun (2015)

Czechoslovak Mathematical Journal

Similarity:

The generalized k -connectivity κ k ( G ) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k -edge-connectivity which is defined as λ k ( G ) = min { λ ( S ) : S V ( G ) and | S | = k } , where λ ( S ) denotes the maximum number of pairwise edge-disjoint trees T 1 , T 2 , ... , T in G such that S V ( T i ) for 1 i . In this paper we prove that for any two connected graphs G and H we have λ 3 ( G H ) λ 3 ( G ) + λ 3 ( H ) , where G H is the Cartesian product of G and H . Moreover, the bound is sharp. We also...

Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma, Yan Ling Shao (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) ....

The potential-Ramsey number of K n and K t - k

Jin-Zhi Du, Jian Hua Yin (2022)

Czechoslovak Mathematical Journal

Similarity:

A nonincreasing sequence π = ( d 1 , ... , d n ) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π . Given two graphs G 1 and G 2 , A. Busch et al. (2014) introduced the potential-Ramsey number of G 1 and G 2 , denoted by r pot ( G 1 , G 2 ) , as the smallest nonnegative integer m such that for every m -term graphic sequence π , there is a realization G of π with G 1 G or with G 2 G ¯ , where G ¯ is the complement of G . For t 2 and 0 k t 2 , let K t - k be the graph...

Characterizing finite groups whose enhanced power graphs have universal vertices

David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and construct a graph Δ ( G ) by taking G { 1 } as the vertex set of Δ ( G ) and by drawing an edge between two vertices x and y if x , y is cyclic. Let K ( G ) be the set consisting of the universal vertices of Δ ( G ) along the identity element. For a solvable group G , we present a necessary and sufficient condition for K ( G ) to be nontrivial. We also develop a connection between Δ ( G ) and K ( G ) when | G | is divisible by two distinct primes and the diameter of Δ ( G ) is 2.