Displaying similar documents to “On sets of discontinuities of functions continuous on all lines”

Some results on the co-intersection graph of submodules of a module

Lotf Ali Mahdavi, Yahya Talebi (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a ring with identity and M be a unitary left R -module. The co-intersection graph of proper submodules of M , denoted by Ω ( M ) , is an undirected simple graph whose vertex set V ( Ω ) is a set of all nontrivial submodules of M and two distinct vertices N and K are adjacent if and only if N + K M . We study the connectivity, the core and the clique number of Ω ( M ) . Also, we provide some conditions on the module M , under which the clique number of Ω ( M ) is infinite and Ω ( M ) is a planar graph. Moreover, we give...

Matchings in complete bipartite graphs and the r -Lah numbers

Gábor Nyul, Gabriella Rácz (2021)

Czechoslovak Mathematical Journal

Similarity:

We give a graph theoretic interpretation of r -Lah numbers, namely, we show that the r -Lah number n k r counting the number of r -partitions of an ( n + r ) -element set into k + r ordered blocks is just equal to the number of matchings consisting of n - k edges in the complete bipartite graph with partite sets of cardinality n and n + 2 r - 1 ( 0 k n , r 1 ). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for r -Stirling numbers of the second kind. ...

Complete pairs of coanalytic sets

Jean Saint Raymond (2007)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of ω ω there exists a continuous function f : ω ω X such that f - 1 ( C ) = D and f - 1 ( C ) = D . We give several explicit examples of complete pairs of coanalytic sets.

Saturation numbers for linear forests P 6 + t P 2

Jingru Yan (2023)

Czechoslovak Mathematical Journal

Similarity:

A graph G is H -saturated if it contains no H as a subgraph, but does contain H after the addition of any edge in the complement of G . The saturation number, sat ( n , H ) , is the minimum number of edges of a graph in the set of all H -saturated graphs of order n . We determine the saturation number sat ( n , P 6 + t P 2 ) for n 10 3 t + 10 and characterize the extremal graphs for n > 10 3 t + 20 .

The Turán number of the graph 3 P 4

Halina Bielak, Sebastian Kieliszek (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

The small Ree group 2 G 2 ( 3 2 n + 1 ) and related graph

Alireza K. Asboei, Seyed S. S. Amiri (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G 2 G 2 ( 3 2 n + 1 ) if and only if 𝒮 ( G ) 𝒮 ( 2 G 2 ( 3 2 n + 1 ) ) . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group 2 G 2 ( 3 2 n + 1 ) .

Even factor of bridgeless graphs containing two specified edges

Nastaran Haghparast, Dariush Kiani (2018)

Czechoslovak Mathematical Journal

Similarity:

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3 . Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary prescribed edges. They also proved that G has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges e 1 and e 2 of G , there is an even factor containing e 1 and e 2 ...

Degree sums of adjacent vertices for traceability of claw-free graphs

Tao Tian, Liming Xiong, Zhi-Hong Chen, Shipeng Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

The line graph of a graph G , denoted by L ( G ) , has E ( G ) as its vertex set, where two vertices in L ( G ) are adjacent if and only if the corresponding edges in G have a vertex in common. For a graph H , define σ ¯ 2 ( H ) = min { d ( u ) + d ( v ) : u v E ( H ) } . Let H be a 2-connected claw-free simple graph of order n with δ ( H ) 3 . We show that, if σ ¯ 2 ( H ) 1 7 ( 2 n - 5 ) and n is sufficiently large, then either H is traceable or the Ryjáček’s closure cl ( H ) = L ( G ) , where G is an essentially 2 -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10...

Maximal independent sets, variants of chain/antichain principle and cofinal subsets without AC

Amitayu Banerjee (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles. 𝒫 lf , c (Every locally finite connected graph has a maximal independent set). 𝒫 lc , c (Every locally countable connected graph has a maximal independent set). CAC 1 α (If in a partially ordered set all antichains are finite and all chains have size α , then the set has size α ) if α is regular. CWF (Every partially ordered set has a...

Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we study the size of the giant component C G in the random geometric graph G = G ( n , r n , f ) of n nodes independently distributed each according to a certain density f ( · ) in [ 0 , 1 ] 2 satisfying inf x [ 0 , 1 ] 2 f ( x ) g t ; 0 . If c 1 n r n 2 c 2 log n n for some positive constants c 1 , c 2 and n r n 2 as n , we show that the giant component of G contains at least n - o ( n ) nodes with probability at least 1 - e - β n r n 2 for all n and for some positive constant β . We also obtain estimates on the diameter and number of the non-giant components of G .

Partitioning planar graph of girth 5 into two forests with maximum degree 4

Min Chen, André Raspaud, Weifan Wang, Weiqiang Yu (2024)

Czechoslovak Mathematical Journal

Similarity:

Given a graph G = ( V , E ) , if we can partition the vertex set V into two nonempty subsets V 1 and V 2 which satisfy Δ ( G [ V 1 ] ) d 1 and Δ ( G [ V 2 ] ) d 2 , then we say G has a ( Δ d 1 , Δ d 2 ) -partition. And we say G admits an ( F d 1 , F d 2 ) -partition if G [ V 1 ] and G [ V 2 ] are both forests whose maximum degree is at most d 1 and d 2 , respectively. We show that every planar graph with girth at least 5 has an ( F 4 , F 4 ) -partition.

A note on solvable vertex stabilizers of s -transitive graphs of prime valency

Song-Tao Guo, Hailong Hou, Yong Xu (2015)

Czechoslovak Mathematical Journal

Similarity:

A graph X , with a group G of automorphisms of X , is said to be ( G , s ) -transitive, for some s 1 , if G is transitive on s -arcs but not on ( s + 1 ) -arcs. Let X be a connected ( G , s ) -transitive graph of prime valency p 5 , and G v the vertex stabilizer of a vertex v V ( X ) . Suppose that G v is solvable. Weiss (1974) proved that | G v | p ( p - 1 ) 2 . In this paper, we prove that G v ( p m ) × n for some positive integers m and n such that n div m and m p - 1 .

Horocyclic products of trees

Laurent Bartholdi, Markus Neuhauser, Wolfgang Woess (2008)

Journal of the European Mathematical Society

Similarity:

Let T 1 , , T d be homogeneous trees with degrees q 1 + 1 , , q d + 1 3 , respectively. For each tree, let 𝔥 : T j be the Busemann function with respect to a fixed boundary point (end). Its level sets are the horocycles. The horocyclic product of T 1 , , T d is the graph 𝖣𝖫 ( q 1 , , q d ) consisting of all d -tuples x 1 x d T 1 × × T d with 𝔥 ( x 1 ) + + 𝔥 ( x d ) = 0 , equipped with a natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic and probabilistic properties of these graphs and their isometry groups. If d = 2 and q 1 = q 2 = q then we obtain a Cayley graph...

On the recognizability of some projective general linear groups by the prime graph

Masoumeh Sajjadi (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The prime graph of G is a simple graph Γ ( G ) whose vertex set is π ( G ) and two distinct vertices p and q are joined by an edge if and only if G has an element of order p q . A group G is called k -recognizable by prime graph if there exist exactly k nonisomorphic groups H satisfying the condition Γ ( G ) = Γ ( H ) . A 1-recognizable group is usually called a recognizable group. In this problem, it was proved that PGL ( 2 , p α ) is recognizable, if p is an odd prime and α > 1 is odd. But for even α , only...

Some properties of generalized distance eigenvalues of graphs

Yuzheng Ma, Yan Ling Shao (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple connected graph with vertex set V ( G ) = { v 1 , v 2 , , v n } and edge set E ( G ) , and let d v i be the degree of the vertex v i . Let D ( G ) be the distance matrix and let T r ( G ) be the diagonal matrix of the vertex transmissions of G . The generalized distance matrix of G is defined as D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where 0 α 1 . Let λ 1 ( D α ( G ) ) λ 2 ( D α ( G ) ) ... λ n ( D α ( G ) ) be the generalized distance eigenvalues of G , and let k be an integer with 1 k n . We denote by S k ( D α ( G ) ) = λ 1 ( D α ( G ) ) + λ 2 ( D α ( G ) ) + ... + λ k ( D α ( G ) ) the sum of the k largest generalized distance eigenvalues. The generalized distance spread of a graph G is defined as D α S ( G ) = λ 1 ( D α ( G ) ) - λ n ( D α ( G ) ) ....

Classification of rings with toroidal Jacobson graph

Krishnan Selvakumar, Manoharan Subajini (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with nonzero identity and J ( R ) the Jacobson radical of R . The Jacobson graph of R , denoted by 𝔍 R , is defined as the graph with vertex set R J ( R ) such that two distinct vertices x and y are adjacent if and only if 1 - x y is not a unit of R . The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface S n . In this paper, we investigate the genus number of the compact Riemann surface in which 𝔍 R can be embedded and...

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .

On g c -colorings of nearly bipartite graphs

Yuzhuo Zhang, Xia Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple graph, let d ( v ) denote the degree of a vertex v and let g be a nonnegative integer function on V ( G ) with 0 g ( v ) d ( v ) for each vertex v V ( G ) . A g c -coloring of G is an edge coloring such that for each vertex v V ( G ) and each color c , there are at least g ( v ) edges colored c incident with v . The g c -chromatic index of G , denoted by χ g c ' ( G ) , is the maximum number of colors such that a g c -coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g ( G ) or δ g ( G ) - 1 , where δ g ( G ) = min v V ( G ) d ( v ) / g ( v ) . A graph G is nearly bipartite,...