Displaying similar documents to “Linear preservers of rc-majorization on matrices”

Row Hadamard majorization on 𝐌 m , n

Abbas Askarizadeh, Ali Armandnejad (2021)

Czechoslovak Mathematical Journal

Similarity:

An m × n matrix R with nonnegative entries is called row stochastic if the sum of entries on every row of R is 1. Let 𝐌 m , n be the set of all m × n real matrices. For A , B 𝐌 m , n , we say that A is row Hadamard majorized by B (denoted by A R H B ) if there exists an m × n row stochastic matrix R such that A = R B , where X Y is the Hadamard product (entrywise product) of matrices X , Y 𝐌 m , n . In this paper, we consider the concept of row Hadamard majorization as a relation on 𝐌 m , n and characterize the structure of all linear operators T : 𝐌 m , n 𝐌 m , n preserving...

G-matrices, J -orthogonal matrices, and their sign patterns

Frank J. Hall, Miroslav Rozložník (2016)

Czechoslovak Mathematical Journal

Similarity:

A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D 1 and D 2 such that A - T = D 1 A D 2 , where A - T denotes the transpose of the inverse of A . Denote by J = diag ( ± 1 ) a diagonal (signature) matrix, each of whose diagonal entries is + 1 or - 1 . A nonsingular real matrix Q is called J -orthogonal if Q T J Q = J . Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation...

On the combinatorial structure of 0 / 1 -matrices representing nonobtuse simplices

Jan Brandts, Abdullah Cihangir (2019)

Applications of Mathematics

Similarity:

A 0 / 1 -simplex is the convex hull of n + 1 affinely independent vertices of the unit n -cube I n . It is nonobtuse if none of its dihedral angles is obtuse, and acute if additionally none of them is right. Acute 0 / 1 -simplices in I n can be represented by 0 / 1 -matrices P of size n × n whose Gramians G = P P have an inverse that is strictly diagonally dominant, with negative off-diagonal entries. In this paper, we will prove that the positive part D of the transposed inverse P - of P is doubly stochastic and has the...

On row-sum majorization

Farzaneh Akbarzadeh, Ali Armandnejad (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕄 n , m be the set of all n × m real or complex matrices. For A , B 𝕄 n , m , we say that A is row-sum majorized by B (written as A rs B ) if R ( A ) R ( B ) , where R ( A ) is the row sum vector of A and is the classical majorization on n . In the present paper, the structure of all linear operators T : 𝕄 n , m 𝕄 n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on n and then find the linear preservers of row-sum majorization of these relations on 𝕄 n , m . ...

( 0 , 1 ) -matrices, discrepancy and preservers

LeRoy B. Beasley (2019)

Czechoslovak Mathematical Journal

Similarity:

Let m and n be positive integers, and let R = ( r 1 , ... , r m ) and S = ( s 1 , ... , s n ) be nonnegative integral vectors. Let A ( R , S ) be the set of all m × n ( 0 , 1 ) -matrices with row sum vector R and column vector S . Let R and S be nonincreasing, and let F ( R ) be the m × n ( 0 , 1 ) -matrix, where for each i , the i th row of F ( R , S ) consists of r i 1’s followed by ( n - r i ) 0’s. Let A A ( R , S ) . The discrepancy of A, disc ( A ) , is the number of positions in which F ( R ) has a 1 and A has a 0. In this paper we investigate linear operators mapping m × n matrices over...

G-tridiagonal majorization on 𝐌 n , m

Ahmad Mohammadhasani, Yamin Sayyari, Mahdi Sabzvari (2021)

Communications in Mathematics

Similarity:

For X , Y 𝐌 n , m , it is said that X is majorized by Y (and it is denoted by X g t Y ) if there exists a tridiagonal g-doubly stochastic matrix A such that X = A Y . In this paper, the linear preservers and strong linear preservers of g t are characterized on 𝐌 n , m .

Maps on upper triangular matrices preserving zero products

Roksana Słowik (2017)

Czechoslovak Mathematical Journal

Similarity:

Consider 𝒯 n ( F ) —the ring of all n × n upper triangular matrices defined over some field F . A map φ is called a zero product preserver on 𝒯 n ( F ) in both directions if for all x , y 𝒯 n ( F ) the condition x y = 0 is satisfied if and only if φ ( x ) φ ( y ) = 0 . In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map φ may act in any bijective way, whereas for the zero divisors and zero matrix one can write φ as a...

On linear preservers of two-sided gut-majorization on 𝐌 n , m

Asma Ilkhanizadeh Manesh, Ahmad Mohammadhasani (2018)

Czechoslovak Mathematical Journal

Similarity:

For X , Y 𝐌 n , m it is said that X is gut-majorized by Y , and we write X gut Y , if there exists an n -by- n upper triangular g-row stochastic matrix R such that X = R Y . Define the relation gut as follows. X gut Y if X is gut-majorized by Y and Y is gut-majorized by X . The (strong) linear preservers of gut on n and strong linear preservers of this relation on 𝐌 n , m have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of gut on n and 𝐌 n , m .

Controllable and tolerable generalized eigenvectors of interval max-plus matrices

Matej Gazda, Ján Plavka (2021)

Kybernetika

Similarity:

By max-plus algebra we mean the set of reals equipped with the operations a b = max { a , b } and a b = a + b for a , b . A vector x is said to be a generalized eigenvector of max-plus matrices A , B ( m , n ) if A x = λ B x for some λ . The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval)...

Computing the greatest 𝐗 -eigenvector of a matrix in max-min algebra

Ján Plavka (2016)

Kybernetika

Similarity:

A vector x is said to be an eigenvector of a square max-min matrix A if A x = x . An eigenvector x of A is called the greatest 𝐗 -eigenvector of A if x 𝐗 = { x ; x ̲ x x ¯ } and y x for each eigenvector y 𝐗 . A max-min matrix A is called strongly 𝐗 -robust if the orbit x , A x , A 2 x , reaches the greatest 𝐗 -eigenvector with any starting vector of 𝐗 . We suggest an O ( n 3 ) algorithm for computing the greatest 𝐗 -eigenvector of A and study the strong 𝐗 -robustness. The necessary and sufficient conditions for strong 𝐗 -robustness are introduced...

-simplicity of interval max-min matrices

Ján Plavka, Štefan Berežný (2018)

Kybernetika

Similarity:

A matrix A is said to have 𝐗 -simple image eigenspace if any eigenvector x belonging to the interval 𝐗 = { x : x ̲ x x ¯ } containing a constant vector is the unique solution of the system A y = x in 𝐗 . The main result of this paper is an extension of 𝐗 -simplicity to interval max-min matrix 𝐀 = { A : A ̲ A A ¯ } distinguishing two possibilities, that at least one matrix or all matrices from a given interval have 𝐗 -simple image eigenspace. 𝐗 -simplicity of interval matrices in max-min algebra are studied and equivalent conditions for...

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Similarity:

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order...