Displaying similar documents to “Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires”

Représentation des entiers naturels et suites uniformément équiréparties

Jean Coquet (1982)

Annales de l'institut Fourier

Similarity:

s ( n ) désigne la somme des chiffres de l’entier n en base q et σ α ( n ) la somme des chiffres de n associée au développement de α en fraction continue. Dans un article paru aux Annales de l’Institut Fourier (31 (1981), 1–15), Coquet, Rhin et Toffin montrent que, lorsque x ou y est irrationnel, la suite x s + y σ α est équirépartie modulo 1. On précise ici que l’équirépartition est uniforme.

Quelques fonctions moyennes-périodiques non bornées

Yves Meyer, Jean-Pierre Schreiber (1969)

Annales de l'institut Fourier

Similarity:

Pour toute suite { λ n } n N , de nombres réels, vérifiant : 1 / lim n { λ n - n } = 0 , et 2 / λ n n pour une infinité de valeurs de n , on montre l’existence de fonctions moyennes-périodiques non bornées à spectre dans { λ n } .

Régularité conormale classique des problèmes de Cauchy et de réflexion transverse pour un système 2 × 2 semi-linéaire

B. Nadir, Jean-Pierre Varenne (1990)

Annales de l'institut Fourier

Similarity:

On considère un système semi-linéaire du premier ordre de taille 2 × 2 dans un ouvert de n , une hypersurface S non caractéristique et une hypersurface Γ de S . On suppose que, par Γ , passent deux hypersurfaces caractéristiques Σ 1 , Σ 2 transverses et que les bicaractéristiqiues sur Σ 1 , Σ 2 sont transverses à Γ . Soit u une solution dans une demi-région Ω délimitée par σ . On suppose que u est la restriction à Ω d’une distribution conormale par morceaux par rapport à Σ 1 , Σ 2 . Pour le problème de Cauchy,...

Un résultat sur les fonctions de classe C 1 , α et application au problème de Cauchy

Robert Dalmasso (1986)

Annales de l'institut Fourier

Similarity:

Nous montrons principalement que, si f 0 est une fonction différentiable sur un intervalle [ 0 , T ] , si sa dérivée est höldérienne d’ordre α avec 0 < α 1 et si f ' ( 0 ) = 0 (resp. f ' ( T ) = 0 ) quand f ( 0 ) = 0 (resp. f ( T ) = 0 ) alors f 1 / ( 1 + α ) , qui est absolument continue, admet (presque partout) une dérivée bornée presque partout.

Sur certains ensembles normaux

J.-P. Borel (1989)

Journal de théorie des nombres de Bordeaux

Similarity:

Λ étant une suite de nombres réels, soit B ( Λ ) l’ensemble normal associé. Pour A , nous étudions la question : existe-t-il une suite Λ à valeurs dans un intervalle borné I telle que A = B ( Λ ) ? Dans l’affirmative, nous cherchons alors à minimiser la longueur de l’intervalle I . Dans les cas les plus simples, où A , ce problème se ramène à minimiser le degré de Q [ X ] , avec la contrainte « P Q a tous ses coefficients positifs», pour des polynômes P de type très particulier associés aux ensembles...

Oscillations d'un terme d'erreur lié à la fonction totient de Jordan

Y.-F. S. Pétermann (1991)

Journal de théorie des nombres de Bordeaux

Similarity:

Let J k ( n ) : = n k p n ( 1 - p - k ) (the k -th Jordan totient function, and for k = 1 the Euler phi function), and consider the associated error term E k ( x ) : = n x J k ( n ) - x k + 1 ( k + 1 ) ζ ( k + 1 ) . When k 2 , both i k : = E k ( x ) x - k and s k : = lim sup E k ( x ) x - k are finite, and we are interested in estimating these quantities. We may consider instead I k : = lim inf n , n d 1 (d)dk ( 12 - { nd} ), since from [AS] i k = I k - ( ζ ( k + 1 ) ) - 1 and from the present paper s k = - i k . We show that I k belongs to an interval of the form 1 2 ζ ( k ) - 1 ( k - 1 ) N k - 1 , 1 2 ζ ( k ) , where N = N ( k ) as k . From a more practical point of view we describe...

Fonctions opérant sur les fonctions définies-positives

Carl S. Herz (1963)

Annales de l'institut Fourier

Similarity:

Soit G un groupe commutatif localement compact. On se propose de déterminer les fonctions f , définies sur le disque-unité ouvert du plan complexe [ z : | z | < 1 ] , à valeurs complexes, telles que la fonction composée f ( φ ) soit définie-positive chaque fois que φ est une fonction définie-positive sur G avec | φ | < 1 partout. On prouve que si G contient des éléments dont les ordres sont aussi grands qu’on veut, alors il faut et il suffit que f soit représentée par une série convergente pour | z | < 1 ...