An introduction to Karel Vorovka's philosophy of randomness. (Following by two translations from the Czech. Completed by the English translation of the following documents).
We present analytical solution of the Stokes problem in rotationally symmetric domains. This is then used to find the asymptotic behaviour of the solution in the vicinity of corners, also for Navier-Stokes equations. We apply this to construct very precise numerical finite element solution.
We present analytical solution of the Stokes problem in 2D domains. This is then used to find the asymptotic behavior of the solution in the vicinity of corners, also for Navier-Stokes equations in 2D. We apply this to construct very precise numerical finite element solution.
Given a base design with quantitative factors and a primary linear regression to each of the treatments, we may adjust secondary regressions of linear combinations of the adjusted coefficients on the primary regressions on the factor levels, thus obtaining a biregressional model. A biregressional design was established for a set of treatments, defined from quantitative factors and a linear regression in the same variables. Afterwards the action of the regression coefficients...
Multi-dimensional advection terms are an important part of many large-scale mathematical models which arise in different fields of science and engineering. After applying some kind of splitting, these terms can be handled separately from the remaining part of the mathematical model under consideration. It is important to treat the multi-dimensional advection in a sufficiently accurate manner. It is shown in this paper that high order of accuracy can be achieved when the well-known Crank-Nicolson...
Experience in setting up a comprehensive journal processing system based on the TeX typesetting system with the CEDRAM workflow is described, following the example of the Archivum Mathematicum journal. The system automates the preparation of issues and simultaneously generates the materials needed for the Czech Digital Mathematics Library project (DML-CZ). The second part of the article describes the process of transformation of archival born-digital articles into a DML-CZ-suitable format.
Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of blockbased physical modeling,...