Displaying 2161 – 2180 of 5989

Showing per page

Juegos no cooperativos con preferencias difusas.

Juan Tejada Cazorla (1988)

Trabajos de Investigación Operativa

El objetivo de este trabajo es el estudio de los juegos no cooperativos en los que los jugadores expresan sus preferencias sobre las consecuencias que se derivan de sus acciones mediante relaciones binarias difusas. El concepto de solución que se maneja es el de estrategias en equilibrio. La existencia de tales estrategias queda probada en el caso de que los jugadores definan sus preferencias sobre las consecuencias aleatorias mediante la extensión lineal introducida en Montero-Tejada (1986a).

K-analytic versus ccm-analytic sets in nonstandard compact complex manifolds

Rahim Moosa, Sergei Starchenko (2008)

Fundamenta Mathematicae

It is shown that in an elementary extension of a compact complex manifold M, the K-analytic sets (where K is the algebraic closure of the underlying real closed field) agree with the ccm-analytic sets if and only if M is essentially saturated. In particular, this is the case for compact Kähler manifolds.

Kappa-Slender Modules

Radoslav Dimitric (2020)

Communications in Mathematics

For an arbitrary infinite cardinal κ , we define classes of κ -cslender and κ -tslender modules as well as related classes of κ -hmodules and initiate a study of these classes.

Keeping the covering number of the null ideal small

Teruyuki Yorioka (2015)

Fundamenta Mathematicae

It is proved that ideal-based forcings with the side condition method of Todorcevic (1984) add no random reals. By applying Judah-Repický's preservation theorem, it is consistent with the covering number of the null ideal being ℵ₁ that there are no S-spaces, every poset of uniform density ℵ₁ adds ℵ₁ Cohen reals, there are only five cofinal types of directed posets of size ℵ₁, and so on. This extends the previous work of Zapletal (2004).

Kneser’s theorem for upper Banach density

Prerna Bihani, Renling Jin (2006)

Journal de Théorie des Nombres de Bordeaux

Suppose A is a set of non-negative integers with upper Banach density α (see definition below) and the upper Banach density of A + A is less than 2 α . We characterize the structure of A + A by showing the following: There is a positive integer g and a set W , which is the union of 2 α g - 1 arithmetic sequences [We call a set of the form a + d an arithmetic sequence of difference d and call a set of the form { a , a + d , a + 2 d , ... , a + k d } an arithmetic progression of difference d . So an arithmetic progression is finite and an arithmetic sequence...

Currently displaying 2161 – 2180 of 5989