Les boules peuvent-elles engendrer la tribu borélienne d'un espace métrisable non séparable ?
On montre comment la théorie des classes de Gevrey et de la sommabilité sont des généralisations naturelles de la théorie de Cauchy. On utilise le vocabulaire de l’Analyse Non Standard et on introduit la notion d’-fonction (fonction analytique définie “à près”, pour infiniment petit fixé, et ne prenant que des valeurs infiniment petite devant . On étend la théorie de Cauchy aux -fonctions : c’est la théorie de Cauchy sauvage. On interprète le phénomène de retard à la bifurcation à l’aide...
Nous démontrons dans ce papier que les types du système habités uniquement par des -termes (les -types) sont à quantificateur positif. Nous présentons ensuite des conséquenses de ce résultat et quelques exemples.
We prove in this paper that the types of system inhabited uniquely by λI-terms (the I-types) have a positive quantifier. We give also consequences of this result and some examples.
Nous présentons dans ce papier une définition purement syntaxique des types entrées et des types sorties du système . Nous définissons les types de données syntaxiques comme étant des types entrées et sorties. Nous démontrons que les types à quantificateurs positifs sont des types de données syntaxiques et qu’un type entrée est un type sortie. Nous imposons des restrictions sur la règle d’élimination des quantificateurs pour démontrer qu’un type sortie est un type entrée.
We give in this paper a purely syntactical definition of input and output types of system . We define the syntactical data types as input and output types. We show that any type with positive quantifiers is a syntactical data type and that an input type is an output type. We give some restrictions on the ∀-elimination rule in order to prove that an output type is an input type.
We answer a question of Darji and Keleti by proving that there exists a compact set C₀ ⊂ ℝ of measure zero such that for every perfect set P ⊂ ℝ there exists x ∈ ℝ such that (C₀+x) ∩ P is uncountable. Using this C₀ we answer a question of Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from ) that less than many translates of a compact set of measure zero can cover ℝ.
In his paper [Kybernetika 31, No. 1, 99–106 (1995; Zbl 0857.03042)], E. Turunen says in the corollary on p. 106: “Notice that the third last line on page 195 in [J. K. Mattila, “Modifier logic”, in: J. Kacprzyk (ed.) et al., Fuzzy logic for the management of uncertainty. New York: Wiley. 191–209 (1992)] stating that LPC+Ch calculus is consistent is not correct.” The system LPC+Ch is consistent, which can be seen quite trivially.
We construct two models for the level by level equivalence between strong compactness and supercompactness in which if κ is λ supercompact and λ ≥ κ is regular, we are able to determine exactly the number of normal measures carries. In the first of these models, carries many normal measures, the maximal number. In the second of these models, carries many normal measures, except if κ is a measurable cardinal which is not a limit of measurable cardinals. In this case, κ (and hence also )...
We construct three models containing exactly one supercompact cardinal in which level by level inequivalence between strong compactness and supercompactness holds. In the first two models, below the supercompact cardinal κ, there is a non-supercompact strongly compact cardinal. In the last model, any suitably defined ground model Easton function is realized.
We introduce the notion of leveled structure and show that every structure elementarily equivalent to the real expo field expanded by all restricted analytic functions is leveled.