Monotone (co)inductive types and positive fixed-point types
We study five extensions of the polymorphically typed lambda-calculus (system F) by type constructs intended to model fixed-points of monotone operators. Building on work by Geuvers concerning the relation between term rewrite systems for least pre-fixed-points and greatest post-fixed-points of positive type schemes (i.e., non-nested positive inductive and coinductive types) and so-called retract types, we show that there are reduction-preserving embeddings even between systems of monotone (co)inductive...
Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
We study relations between propositional Monotone Sequent Calculus (MLK --- also known as Geometric Logic) and Resolution with respect to the complexity of proofs, namely to the concept of the polynomial simulation of proofs. We consider Resolution on sets of monochromatic clauses. We prove that there exists a polynomial simulation of proofs in MLK by intuitionistic proofs. We show a polynomial simulation between proofs from axioms in MLK and corresponding proofs of contradiction (refutations) in...
We develop problems of monotonic valuations of triads. A theorem on monotonic valuations of triads of the type is presented. We study, using the notion of the monotonic valuation, representations of ideals by monotone and subadditive mappings. We prove, for example, that there exists, for each ideal of the type on a set , a monotone and subadditive set-mapping on with values in non-negative rational numbers such that . Some analogical results are proved for ideals of the types and...
Hušek defines a space X to have a small diagonal if each uncountable subset of X² disjoint from the diagonal has an uncountable subset whose closure is disjoint from the diagonal. Hušek proved that a compact space of weight ω₁ which has a small diagonal will be metrizable, but it remains an open problem to determine if the weight restriction is necessary. It has been shown to be consistent that each compact space with a small diagonal is metrizable; in particular, Juhász and Szentmiklóssy proved...
We establish two new Easton theorems for the least supercompact cardinal that are consistent with the level by level equivalence between strong compactness and supercompactness. These theorems generalize Theorem 1 in our earlier paper [Math. Logic Quart. 51 (2005)]. In both our ground model and the model witnessing the conclusions of our present theorems, there are no restrictions on the structure of the class of supercompact cardinals.
Given an ideal on let () be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of . We show that if is a summable ideal; but for any tall density ideal including the density zero ideal . On the other hand, you have for any analytic -ideal , and for each density ideal . For each ideal on denote and the unbounding and dominating numbers of where iff . We show that and for each analytic -ideal . Given a Borel ideal on...
This paper is a continuation of [19], where the divisibility criteria for initial prime numbers based on their representation in the decimal system were formalized. In the current paper we consider all primes up to 101 to demonstrate the method presented in [7].
Continuing the earlier research [Fund. Math. 129 (1988) and 149 (1996)] we give some information about extending automorphisms of models of PA to cofinal extensions.
By results of [9] there are models and for which the Ehrenfeucht-Fraïssé game of length ω₁, , is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ₂. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and is determined for all models and of cardinality ℵ₂” is that of a weakly compact cardinal. On the other hand, we show that if , T is a countable complete...
A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...
We consider the question of when , where is the elementary submodel topology on X ∩ M, especially in the case when is compact.
We prove in ZFC that every additive set is additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.