Displaying 2521 – 2540 of 5989

Showing per page

More results in polychromatic Ramsey theory

Uri Abraham, James Cummings (2012)

Open Mathematics

We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2ω = ω 2 and ω 2 p o l y ( α ) 0 - b d d 2 for every α <ω 2; (2) 2ω = ω 2 and ω 2 p o l y ( ω 1 ) 2 - b d d 2 .

More set-theory around the weak Freese–Nation property

Sakaé Fuchino, Lajos Soukup (1997)

Fundamenta Mathematicae

We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang’s Conjecture for ω , we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding Cohen reals,...

Morley’s Trisector Theorem

Roland Coghetto (2015)

Formalized Mathematics

Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].

Multiple gaps

Antonio Avilés, Stevo Todorcevic (2011)

Fundamenta Mathematicae

We study a higher-dimensional version of the standard notion of a gap formed by a finite sequence of ideals of the quotient algebra 𝓟(ω)/fin. We examine different types of such objects found in 𝓟(ω)/fin both from the combinatorial and the descriptive set-theoretic side.

Multiplication of nonadditive cuts in AST

Karel Čuda (1991)

Commentationes Mathematicae Universitatis Carolinae

Three complete characteristics of couples of nonadditive cuts such that J × K ̲ J t i m e s K ¯ are given. The equality J × K ¯ = J ! K is proved for all couples of nonadditive cuts. Some examples of nonadditive cuts are described.

Currently displaying 2521 – 2540 of 5989