Displaying 3381 – 3400 of 5989

Showing per page

Parametric families of fuzzy consequence operators.

Javier Elorza, Pedro Burillo (2004)

Mathware and Soft Computing

In a previous paper we explored the notion of coherent fuzzy consequence operator. Since we did not know of any example in the literature of non-coherent fuzzy consequence operator, we also showed several families of such operators. It is well-known that the operator induced by a fuzzy preorder through Zadeh's compositional rule is always a coherent fuzzy consequence operator. It is also known that the relation induced by a fuzzy consequence operator is a fuzzy preorder if such operator is coherent....

Parametrized Cichoń's diagram and small sets

Janusz Pawlikowski, Ireneusz Recław (1995)

Fundamenta Mathematicae

We parametrize Cichoń’s diagram and show how cardinals from Cichoń’s diagram yield classes of small sets of reals. For instance, we show that there exist subsets N and M of w w × 2 w and continuous functions e , f : w w w w such that  • N is G δ and N x : x w w , the collection of all vertical sections of N, is a basis for the ideal of measure zero subsets of 2 w ;  • M is F σ and M x : x w w is a basis for the ideal of meager subsets of 2 w ;  • x , y N e ( x ) N y M x M f ( y ) . From this we derive that for a separable metric space X,  •if for all Borel (resp. G δ ) sets B X × 2 w with all...

Parametrized prime implicant-implicate computations for regular logics.

Anavai Ramesh, Neil V. Murray (1997)

Mathware and Soft Computing

Prime implicant-implicate generating algorithms for multiple-valued logics (MVL's) are introduced. Techniques from classical logic not requiring large normal forms or truth tables are adapted to certain regular'' multiple-valued logics. This is accomplished by means of signed formulas, a meta-logic for multiple valued logics; the formulas are normalized in a way analogous to negation normal form. The logic of signed formulas is classical in nature. The presented method is based on path dissolution,...

Partial choice functions for families of finite sets

Eric J. Hall, Saharon Shelah (2013)

Fundamenta Mathematicae

Let m ≥ 2 be an integer. We show that ZF + “Every countable set of m-element sets has an infinite partial choice function” is not strong enough to prove that every countable set of m-element sets has a choice function, answering an open question from . (Actually a slightly stronger result is obtained.) The independence result in the case where m = p is prime is obtained by way of a permutation (Fraenkel-Mostowski) model of ZFA, in which the set of atoms (urelements) has the structure of a vector...

Partially additive states on orthomodular posets

Josef Tkadlec (1991)

Colloquium Mathematicae

We fix a Boolean subalgebra B of an orthomodular poset P and study the mappings s:P → [0,1] which respect the ordering and the orthocomplementation in P and which are additive on B. We call such functions B-states on P. We first show that every P possesses "enough" two-valued B-states. This improves the main result in [13], where B is the centre of P. Moreover, it allows us to construct a closure-space representation of orthomodular lattices. We do this in the third section. This result may also...

Partition ideals below ω

P. Dodos, J. Lopez-Abad, S. Todorcevic (2012)

Fundamenta Mathematicae

Motivated by an application to the unconditional basic sequence problem appearing in our previous paper, we introduce analogues of the Laver ideal on ℵ₂ living on index sets of the form [ k ] ω and use this to refine the well-known high-dimensional polarized partition relation for ω of Shelah.

Partition properties of subsets of Pκλ

Masahiro Shioya (1999)

Fundamenta Mathematicae

Let κ > ω be a regular cardinal and λ > κ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any f : n < ω [ X ] n γ with X P κ λ unbounded and 1 < γ < κ there is an unbounded Y ∪ X with | f ' ' [ Y ] n | = 1 for any n < ω.

Partition properties of ω1 compatible with CH

Uri Abraham, Stevo Todorčević (1997)

Fundamenta Mathematicae

A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.

Partitioning bases of topological spaces

Dániel T. Soukup, Lajos Soukup (2014)

Commentationes Mathematicae Universitatis Carolinae

We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a T 3 Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size 2 ω and weight ω 1 which admits a point countable base without a partition to two bases.

Currently displaying 3381 – 3400 of 5989