Displaying 21 – 40 of 88

Showing per page

Beta-reduction as unification

A. Kfoury (1999)

Banach Center Publications

We define a new unification problem, which we call β-unification and which can be used to characterize the β-strong normalization of terms in the λ-calculus. We prove the undecidability of β-unification, its connection with the system of intersection types, and several of its basic properties.

Between logic and probability.

Ton Sales (1994)

Mathware and Soft Computing

Logic and Probability, as theories, have been developed quite independently and, with a few exceptions (like Boole's), have largely ignored each other. And nevertheless they share a lot of similarities, as well a considerable common ground. The exploration of the shared concepts and their mathematical treatment and unification is here attempted following the lead of illustrious researchers (Reichenbach, Carnap, Popper, Gaifman, Scott & Krauss, Fenstad, Miller, David Lewis, Stalnaker, Hintikka...

Beyond Lebesgue and Baire II: Bitopology and measure-category duality

N. H. Bingham, A. J. Ostaszewski (2010)

Colloquium Mathematicae

We re-examine measure-category duality by a bitopological approach, using both the Euclidean and the density topologies of the line. We give a topological result (on convergence of homeomorphisms to the identity) obtaining as a corollary results on infinitary combinatorics due to Kestelman and to Borwein and Ditor. We hence give a unified proof of the measure and category cases of the Uniform Convergence Theorem for slowly varying functions. We also extend results on very slowly varying functions...

bi-BL-algebra

Mahdeieh Abbasloo, Arsham Borumand Saeid (2011)

Discussiones Mathematicae - General Algebra and Applications

In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.

Bidual Spaces and Reflexivity of Real Normed Spaces

Keiko Narita, Noboru Endou, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we considered bidual spaces and reflexivity of real normed spaces. At first we proved some corollaries applying Hahn-Banach theorem and showed related theorems. In the second section, we proved the norm of dual spaces and defined the natural mapping, from real normed spaces to bidual spaces. We also proved some properties of this mapping. Next, we defined real normed space of R, real number spaces as real normed spaces and proved related theorems. We can regard linear functionals...

Biequivalence vector spaces in the alternative set theory

Miroslav Šmíd, Pavol Zlatoš (1991)

Commentationes Mathematicae Universitatis Carolinae

As a counterpart to classical topological vector spaces in the alternative set theory, biequivalence vector spaces (over the field Q of all rational numbers) are introduced and their basic properties are listed. A methodological consequence opening a new view towards the relationship between the algebraic and topological dual is quoted. The existence of various types of valuations on a biequivalence vector space inducing its biequivalence is proved. Normability is characterized in terms of total...

Binary and ternary relations

Vítězslav Novák, Miroslav Novotný (1992)

Mathematica Bohemica

Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.

Binary Relations-based Rough Sets – an Automated Approach

Adam Grabowski (2016)

Formalized Mathematics

Rough sets, developed by Zdzisław Pawlak [12], are an important tool to describe the state of incomplete or partially unknown information. In this article, which is essentially the continuation of [8], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library [11]). Here we drop the classical equivalence- and tolerance-based models of rough...

Currently displaying 21 – 40 of 88