Absence of the interpolation property in the calculi and .
Educational content for abstract reduction systems concerning reduction, convertibility, normal forms, divergence and convergence, Church- Rosser property, term rewriting systems, and the idea of the Knuth-Bendix Completion Algorithm. The theory is based on [1].
For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is if the dominating eigenvalue of the automaton accepting the language is a Pisot number. Moreover, if is neither a Pisot nor a Salem number, then there exist points in which do not have any ultimately periodic representation.
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
We prove in ZFC that there is a set and a surjective function H: A → ⟨0,1⟩ such that for every null additive set X ⊆ ⟨0,1), is null additive in . This settles in the affirmative a question of T. Bartoszyński.
We study pairs (V, V₁), V ⊆ V₁, of models of ZFC such that adding κ-many Cohen reals over V₁ adds λ-many Cohen reals over V for some λ > κ.