Displaying 61 – 80 of 725

Showing per page

A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube

Miloš S. Kurilić, Aleksandar Pavlović (2014)

Czechoslovak Mathematical Journal

We compare the forcing-related properties of a complete Boolean algebra 𝔹 with the properties of the convergences λ s (the algebraic convergence) and λ ls on 𝔹 generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that λ ls is a topological convergence iff forcing by 𝔹 does not produce new reals and that λ ls is weakly topological if 𝔹 satisfies condition ( ) (implied by the 𝔱 -cc). On the other hand, if λ ls is a weakly topological convergence, then 𝔹 is a 2 𝔥 -cc algebra...

A Corson compact L-space from a Suslin tree

Peter Nyikos (2015)

Colloquium Mathematicae

The completion of a Suslin tree is shown to be a consistent example of a Corson compact L-space when endowed with the coarse wedge topology. The example has the further properties of being zero-dimensional and monotonically normal.

A countable dense homogeneous set of reals of size ℵ₁

Ilijas Farah, Michael Hrušák, Carlos Azarel Martínez Ranero (2005)

Fundamenta Mathematicae

We prove there is a countable dense homogeneous subspace of ℝ of size ℵ₁. The proof involves an absoluteness argument using an extension of the L ω ω ( Q ) logic obtained by adding predicates for Borel sets.

A Daniell integral approach to nonstandard Kurzweil-Henstock integral

Ricardo Bianconi, João C. Prandini, Cláudio Possani (1999)

Czechoslovak Mathematical Journal

A workable nonstandard definition of the Kurzweil-Henstock integral is given via a Daniell integral approach. This allows us to study the HL class of functions from . The theory is recovered together with a few new results.

A deceptive fact about functions

Wiesław Dziobiak, Andrzej Ehrenfeucht, Jacqueline Grace, Donald Silberger (2000)

Fundamenta Mathematicae

The paper provides a proof of a combinatorial result which pertains to the characterization of the set of equations which are solvable in the composition monoid of all partial functions on an infinite set.

A decomposition of a set definable in an o-minimal structure into perfectly situated sets

Wiesław Pawłucki (2002)

Annales Polonici Mathematici

A definable subset of a Euclidean space X is called perfectly situated if it can be represented in some linear system of coordinates as a finite union of (graphs of) definable 𝓒¹-maps with bounded derivatives. Two subsets of X are called simply separated if they satisfy the Łojasiewicz inequality with exponent 1. We show that every closed definable subset of X of dimension k can be decomposed into a finite family of closed definable subsets each of which is perfectly situated and such that any...

A descriptive view of unitary group representations

Simon Thomas (2015)

Journal of the European Mathematical Society

In this paper, we will study the relative complexity of the unitary duals of countable groups. In particular, we will explain that if G and H are countable amenable non-type I groups, then the unitary duals of G and H are Borel isomorphic.

A dichotomy for P-ideals of countable sets

Stevo Todorčević (2000)

Fundamenta Mathematicae

A dichotomy concerning ideals of countable subsets of some set is introduced and proved compatible with the Continuum Hypothesis. The dichotomy has influence not only on the Suslin Hypothesis or the structure of Hausdorff gaps in the quotient algebra P ( ) / but also on some higher order statements like for example the existence of Jensen square sequences.

A discussion on aggregation operators

Daniel Gómez, Montero, Javier (2004)

Kybernetika

It has been lately made very clear that aggregation processes can not be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators { T n } n , being each one of these T n the n -ary operator actually amalgamating information whenever the number of items to be aggregated is n . Of course, some mathematical restrictions can be introduced, in order to assure an appropriate meaning, consistency and key mathematical capabilities. In this...

Currently displaying 61 – 80 of 725