Displaying 61 – 80 of 137

Showing per page

Una proposta di teorie base dei Fondamenti della Matematica

Ennio De Giorgi, Marco Forti, Giacomo Lenzi (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Vengono proposte alcune teorie base dei Fondamenti della Matematica che assumono come concetti primitivi i concetti di numero naturale, collezione, qualità, operazione e relazione; le operazioni e le relazioni considerate possono essere più o meno complesse: il numero naturale che indica il grado di complessità è detto arietà. Nelle teorie considerate è raggiunto un alto grado di autoreferenza.

Una teoria-quadro per i fondamenti della matematica

Ennio De Giorgi, Marco Forti (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We propose a "natural" axiomatic theory of the Foundations of Mathematics (Theory Q) where, in addition to the membership relation (between elements and classes), pairs, sets, natural numbers, n-tuples and operations are also introduced as primitives by means of suitable ground classes. Moreover, the theory Q allows an easy introduction of other mathematical and logical entities. The theory Q is finitely axiomatized in § 2, using a first-order language with a binary relation (membership) and five...

Una visión unificada de los operadores en la teoría de la evidencia.

Luis Miguel de Campos Ibáñez, María Teresa Lamata Jiménez, Serafín Moral Callejón (1988)

Stochastica

The aim of this paper is to review the different operators defined in the Theory of Evidence. All of them are presented from the same point of view. Special attention is given to the logical operators: conjunction (Dempster's Rule), disjunction and negation (defined by Dubois and Prade), and the operators changing the level of granularity on the set of possible states (partitions, fuzzy partitions, etc.).

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are indistinguishable...

Uncountable γ-sets under axiom C P A c u b e g a m e

Krzysztof Ciesielski, Andrés Millán, Janusz Pawlikowski (2003)

Fundamenta Mathematicae

We formulate a Covering Property Axiom C P A c u b e g a m e , which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong γ-sets in ℝ (which are strongly meager) as well as uncountable γ-sets in ℝ which are not strongly meager. These sets must be of cardinality ω₁ < , since every γ-set is universally null, while C P A c u b e g a m e implies that every universally null has cardinality less than = ω₂. We also show that C P A c u b e g a m e implies the existence of a partition of ℝ into ω₁ null compact sets....

Undecidability of infinite post correspondence problem for instances of size 8

Jing Dong, Qinghui Liu (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...

Undecidability of infinite post correspondence problem for instances of size 8

Jing Dong, Qinghui Liu (2012)

RAIRO - Theoretical Informatics and Applications

The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...

Undecidability of infinite post correspondence problem for instances of Size 9

Vesa Halava, Tero Harju (2006)

RAIRO - Theoretical Informatics and Applications

In the infinite Post Correspondence Problem an instance (h,g) consists of two morphisms h and g, and the problem is to determine whether or not there exists an infinite word ω such that h(ω) = g(ω). This problem was shown to be undecidable by Ruohonen (1985) in general. Recently Blondel and Canterini (Theory Comput. Syst.36 (2003) 231–245) showed that this problem is undecidable for domain alphabets of size 105. Here we give a proof that the infinite Post Correspondence Problem is undecidable...

Undecidability of topological and arithmetical properties of infinitary rational relations

Olivier Finkel (2003)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We prove that for every countable ordinal α one cannot decide whether a given infinitary rational relation is in the Borel class Σ α 0 (respectively Π α 0 ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a Σ 1 1 -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot decide whether...

Undecidability of Topological and Arithmetical Properties of Infinitary Rational Relations

Olivier Finkel (2010)

RAIRO - Theoretical Informatics and Applications

We prove that for every countable ordinal α one cannot decide whether a given infinitary rational relation is in the Borel class Σ α 0 (respectively Π α 0 ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a Σ 1 1 -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot decide...

Currently displaying 61 – 80 of 137