A N. Bourbaki type general theory and the properties of contracting symbols and corresponding contracted forms.
We present an axiom system for class of full Euclidean spaces (i.e. of projective closures of Euclidean spaces) and prove the representation theorem for our system, using connections between Euclidean spaces and elliptic planes.
Incidence spatial geometry is based on three-sorted structures consisting of points, lines and planes together with three intersort binary relations between points and lines, lines and planes and points and planes. We introduce an equivalent one-sorted geometrical structure, called incidence spatial frame, which is suitable for modal considerations. We are going to prove completeness by SD-Theorem. Extensions to projective, affine and hyperbolic geometries are also considered.
Hyperbolic projective-metric planes, first axiomatized by R. Lingenberg [7], are shown to be axiomatizable in terms of lines and orthogonality.