Displaying 201 – 220 of 995

Showing per page

Function operators spanning the arithmetical and the polynomial hierarchy

Armin Hemmerling (2010)

RAIRO - Theoretical Informatics and Applications

A modified version of the classical µ-operator as well as the first value operator and the operator of inverting unary functions, applied in combination with the composition of functions and starting from the primitive recursive functions, generate all arithmetically representable functions. Moreover, the nesting levels of these operators are closely related to the stratification of the arithmetical hierarchy. The same is shown for some further function operators known from computability and complexity theory....

Gödel et la thèse de Turing

Pierre Cassou-Noguès (2008)

Revue d'histoire des mathématiques

Cet article porte sur la discussion par Gödel de la thèse de Turing. Pour l’essentiel, nous présentons des notes inédites conservées dans les Archives Gödel, qui apportent des éléments nouveaux sur la relation ambiguë de Gödel à Turing. La première section examine la position qu’avait Gödel avant 1937 sur la possibilité d’une définition de la calculabilité. La deuxième concerne directement l’interprétation par Gödel de la thèse de Turing. Dans plusieurs passages, antérieurs à 1937, Gödel qualifie...

Good choice sets

J. C. E. Dekker (1966)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Hierarchies and reducibilities on regular languages related to modulo counting

Victor L. Selivanov (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We discuss some known and introduce some new hierarchies and reducibilities on regular languages, with the emphasis on the quantifier-alternation and difference hierarchies of the quasi-aperiodic languages. The non-collapse of these hierarchies and decidability of some levels are established. Complete sets in the levels of the hierarchies under the polylogtime and some quantifier-free reducibilities are found. Some facts about the corresponding degree structures are established. As an application,...

Hierarchies and reducibilities on regular languages related to modulo counting

Victor L. Selivanov (2008)

RAIRO - Theoretical Informatics and Applications

We discuss some known and introduce some new hierarchies and reducibilities on regular languages, with the emphasis on the quantifier-alternation and difference hierarchies of the quasi-aperiodic languages. The non-collapse of these hierarchies and decidability of some levels are established. Complete sets in the levels of the hierarchies under the polylogtime and some quantifier-free reducibilities are found. Some facts about the corresponding degree structures are established. As an application, we...

Hierarchies of function classes defined by the first-value operator

Armin Hemmerling (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The first-value operator assigns to any sequence of partial functions of the same type a new such function. Its domain is the union of the domains of the sequence functions, and its value at any point is just the value of the first function in the sequence which is defined at that point. In this paper, the first-value operator is applied to establish hierarchies of classes of functions under various settings. For effective sequences of computable discrete functions, we obtain a hierarchy connected...

Hierarchies of function classes defined by the first-value operator

Armin Hemmerling (2007)

RAIRO - Theoretical Informatics and Applications

The first-value operator assigns to any sequence of partial functions of the same type a new such function. Its domain is the union of the domains of the sequence functions, and its value at any point is just the value of the first function in the sequence which is defined at that point. In this paper, the first-value operator is applied to establish hierarchies of classes of functions under various settings. For effective sequences of computable discrete functions, we obtain a hierarchy connected...

Highly Undecidable Problems For Infinite Computations

Olivier Finkel (2009)

RAIRO - Theoretical Informatics and Applications

We show that many classical decision problems about 1-counter ω-languages, context free ω-languages, or infinitary rational relations, are Π½ -complete, hence located at the second level of the analytical hierarchy, and “highly undecidable”. In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π½ -complete for context-free ω-languages or for infinitary rational...

Currently displaying 201 – 220 of 995