Displaying 41 – 60 of 71

Showing per page

On the continuity set of an Omega rational function

Olivier Carton, Olivier Finkel, Pierre Simonnet (2008)

RAIRO - Theoretical Informatics and Applications

In this paper, we study the continuity of rational functions realized by Büchi finite state transducers. It has been shown by Prieur that it can be decided whether such a function is continuous. We prove here that surprisingly, it cannot be decided whether such a function f has at least one point of continuity and that its continuity set C(f) cannot be computed. In the case of a synchronous rational function, we show that its continuity set is rational and that it can be computed. Furthermore...

On the hierarchies of Δ20-real numbers

Xizhong Zheng (2007)

RAIRO - Theoretical Informatics and Applications

A real number x is called Δ20 if its binary expansion corresponds to a Δ20-set of natural numbers. Such reals are just the limits of computable sequences of rational numbers and hence also called computably approximable. Depending on how fast the sequences converge, Δ20-reals have different levels of effectiveness. This leads to various hierarchies of Δ20 reals. In this survey paper we summarize several recent developments related to such kind of hierarchies shown by the author and his collaborators. ...

Currently displaying 41 – 60 of 71