An application of the Ehrenfeucht-Fraisse game in formal language theory
We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is . We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
The set of all indices of all functions provably recursive in any reasonable theory is shown to be recursively isomorphic to , where is -complete set.
Let r ∈ [0,1]. A set A ⊆ ω is said to be coarsely computable at density r if there is a computable function f such that {n | f(n) = A(n)} has lower density at least r. Our main results are that A is coarsely computable at density 1/2 if A is computably traceable or truth-table reducible to a 1-random set. In the other direction, we show that if a degree a is hyperimmune or PA, then there is an a-computable set which is not coarsely computable at any positive density.
This note is about functions ƒ : Aω → Bω whose graph is recognized by a Büchi finite automaton on the product alphabet A x B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function is Baire class 1 if and only if both the overgraph and the undergraph of f are Fσ. We show that such characterization is also true for functions on infinite words if we replace the real...
New compact representations of infinite graphs are investigated. Finite automata are used to represent labelled hyper-graphs which can be also multi-graphs. Our approach consists of a general framework where vertices are represented by a regular prefix-free language and edges are represented by a regular language and a function over tuples. We consider three different functions over tuples: given a tuple the first function returns its first difference, the second one returns its suffix and the last...
New compact representations of infinite graphs are investigated. Finite automata are used to represent labelled hyper-graphs which can be also multi-graphs. Our approach consists of a general framework where vertices are represented by a regular prefix-free language and edges are represented by a regular language and a function over tuples. We consider three different functions over tuples: given a tuple the first function returns its first difference, the second one returns its suffix and...