Displaying 141 – 160 of 995

Showing per page

Deciding whether a relation defined in Presburger logic can be defined in weaker logics

Christian Choffrut (2008)

RAIRO - Theoretical Informatics and Applications

We consider logics on and which are weaker than Presburger arithmetic and we settle the following decision problem: given a k-ary relation on and which are first order definable in Presburger arithmetic, are they definable in these weaker logics? These logics, intuitively, are obtained by considering modulo and threshold counting predicates for differences of two variables.

Decision problems among the main subfamilies of rational relations

Olivier Carton, Christian Choffrut, Serge Grigorieff (2006)

RAIRO - Theoretical Informatics and Applications

We consider the four families of recognizable, synchronous, deterministic rational and rational subsets of a direct product of free monoids. They form a strict hierarchy and we investigate the following decision problem: given a relation in one of the families, does it belong to a smaller family? We settle the problem entirely when all monoids have a unique generator and fill some gaps in the general case. In particular, adapting a proof of Stearns, we show that it is recursively decidable whether...

Definable hereditary families in the projective hierarchy

R. Barua, V. Srivatsa (1992)

Fundamenta Mathematicae

We show that if ℱ is a hereditary family of subsets of ω ω satisfying certain definable conditions, then the Δ 1 1 reals are precisely the reals α such that β : α Δ 1 1 ( β ) . This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the Q 2 n + 1 -encodable reals is also shown.

Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0

Laurent Moret-Bailly, Alexandra Shlapentokh (2009)

Annales de l’institut Fourier

Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K , not equal to K . We prove the following undecidability results for R : if K is recursive, then Hilbert’s Tenth Problem is undecidable in R . In general, there exist x 1 , ... , x n R such that there is no algorithm to tell whether a polynomial equation with coefficients in ( x 1 , ... , x n ) has solutions in R .

Currently displaying 141 – 160 of 995