Amorphe Potenzen kompakter Räume.
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let be the following statement: “a perfect -space with no more than clopen subsets is connectifiable if and only if no proper nonempty clopen subset of is feebly compact". In this note we show that neither nor is provable in ZFC.
Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define to be X ∩ M with topology generated by . Suppose is homeomorphic to the irrationals; must ? We have partial results. We also answer a question of Gruenhage by showing that if is homeomorphic to the “Long Cantor Set”, then .
We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces of all real continuous functions defined on the compact spaces , the topological product of the Cantor cubes with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently, it is relatively...
A new ⋄-like principle consistent with the negation of the Continuum Hypothesis is introduced and studied. It is shown that is consistent with CH and that in many models of = ω₁ the principle holds. As implies that there is a MAD family of size ℵ₁ this provides a partial answer to a question of J. Roitman who asked whether = ω₁ implies = ω₁. It is proved that holds in any model obtained by adding a single Laver real, answering a question of J. Brendle who asked whether = ω₁ in such models....
As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize -compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize -compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between -compact and Menger spaces.
Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact...
We show the consistency of "there is a nice σ-ideal ℐ on the reals with add(ℐ) = ℵ₁ which cannot be represented as the union of a strictly increasing sequence of length ω₁ of σ-subideals". This answers [Borodulin-Nadzieja and Głąb, Math. Logic Quart. 57 (2011), 582-590, Problem 6.2(ii)].
We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number or its dual, the reaping number .
We study conditions on automorphisms of Boolean algebras of the form (where λ is an uncountable cardinal and is the ideal of sets of cardinality less than κ ) which allow one to conclude that a given automorphism is trivial. We show (among other things) that every automorphism of which is trivial on all sets of cardinality κ⁺ is trivial, and that implies both that every automorphism of (ℝ)/Fin is trivial on a cocountable set and that every automorphism of (ℝ)/Ctble is trivial.
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
For a cardinal μ we give a sufficient condition (involving ranks measuring existence of independent sets) for: if a Borel set B ⊆ ℝ × ℝ contains a μ-square (i.e. a set of the form A × A with |A| =μ) then it contains a -square and even a perfect square, and also for if has a model of cardinality μ then it has a model of cardinality continuum generated in a “nice”, “absolute” way. Assuming for transparency, those three conditions (, and ) are equivalent, and from this we deduce that...
A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....