Displaying 241 – 260 of 371

Showing per page

On reverses of some binary operators

Michal Šabo, Peter Strežo (2005)

Kybernetika

The notion of reverse of any binary operation on the unit interval is introduced. The properties of reverses of some binary operations are studied and some applications of reverses are indicated.

On some geometric transformation of t-norms.

Erich Peter Klement, Radko Mesiar, Endre Pap (1998)

Mathware and Soft Computing

Given a triangular norm T, its t-reverse T*, introduced by C. Kimberling (Publ. Math. Debrecen 20, 21-39, 1973) under the name invert, is studied. The question under which conditions we have T** = T is completely solved. The t-reverses of ordinal sums of t-norms are investigated and a complete description of continuous, self-reverse t-norms is given, leading to a new characterization of the continuous t-norms T such that the function G(x,y) = x + y - T(x,y) is a t-conorm, a problem originally studied...

On some isomorphisms of De Morgan algebras of fuzzy sets.

Francesc Esteva (1983)

Stochastica

In this paper the classes of De Morgan algebras (P(X),∩,U,n) are studied. With respect to isomorphisms of such algebras, being P(X) the fuzzy sets on a universe X taking values in [0,1], U and ∩ the usual union and intersection given by max and min operations and n a proper complement.

On some kinds of fuzzy connected spaces

Qutaiba Ead Hassan (2007)

Applications of Mathematics

In this paper we introduce new results in fuzzy connected spaces. Among the results obtained we can mention the good extension of local connectedness. Also we prove that in a T 1 -fuzzy compact space the notions c-zero dimensional, strong c-zero dimensional and totally c i -disconnected are equivalent.

On some properties of α -planes of type-2 fuzzy sets

Zdenko Takáč (2013)

Kybernetika

Some basic properties of α -planes of type-2 fuzzy sets are investigated and discussed in connection with the similar properties of α -cuts of type-1 fuzzy sets. It is known, that standard intersection and standard union of type-1 fuzzy sets (it means intersection and union under minimum t-norm and maximum t-conorm, respectively) are the only cutworthy operations for type-1 fuzzy sets. Recently, a similar property was declared to be true also for α -planes of type-2 fuzzy sets in a few papers. Thus,...

On somewhat fuzzy semicontinuous functions

G. Thangaraj, Ganesan Balasubramanian (2001)

Kybernetika

In this paper the concept of somewhat fuzzy semicontinuous functions, somewhat fuzzy semiopen functions are introduced and studied. Besides giving characterizations of these functions, several interesting properties of these functions are also given. More examples are given to illustrate the concepts introduced in this paper.

On the additivity of the cardinalities of fuzzy sets of type II.

Ronald R. Yager (1983)

Stochastica

In this short note we show that for fuzzy sets of type II the additive rule for cardinalities holds true. The proof of this result requires an application of approximate reasoning as means of inference by use of the entailment principle.

On the central limit theorem on IFS-events.

Jozefina Petrovicová, Riecan Beloslav (2005)

Mathware and Soft Computing

A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.

On the construction of t-norms (t-conorms) by using interior (closure) operator on bounded lattices

Emel Aşıcı (2022)

Kybernetika

Recently, the topic of construction methods for triangular norms (triangular conorms), uninorms, nullnorms, etc. has been studied widely. In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms) on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods given by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we conclude that the...

On the constructions of t-norms and t-conorms on some special classes of bounded lattices

Emel Aşıcı (2021)

Kybernetika

Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on...

On the direct product of uninorms on bounded lattices

Emel Aşıcı, Radko Mesiar (2021)

Kybernetika

In this paper, we study on the direct product of uninorms on bounded lattices. Also, we define an order induced by uninorms which are a direct product of two uninorms on bounded lattices and properties of introduced order are deeply investigated. Moreover, we obtain some results concerning orders induced by uninorms acting on the unit interval [ 0 , 1 ] .

On the fundamentals of fuzzy sets.

Robert Lowen (1984)

Stochastica

A considerable amount of research has been done on the notions of pseudo complement, intersection and union of fuzzy sets [1], [4], [11]. Most of this work consists of generalizations or alternatives of the basic concepts introduced by L. A. Zadeh in his famous paper [13]: generalization of the unit interval to arbitrary complete and completely distributive lattices or to Boolean algebras [2]; alternatives to union and intersection using the concept of t-norms [3], [10]; alternative complements...

On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric

Dong Qiu, Chongxia Lu, Shuai Deng, Liang Wang (2014)

Kybernetika

In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.

On the L -valued categories of L - E -ordered sets

Olga Grigorenko (2012)

Kybernetika

The aim of this paper is to construct an L -valued category whose objects are L - E -ordered sets. To reach the goal, first, we construct a category whose objects are L - E -ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an L -valued category. Further we investigate the properties of this category, namely, we observe some special objects, special...

On the notion of Fuzzy Set.

Nando Prati (1992)

Stochastica

Many discussions have been made on the problem of(i) What are Fuzzy Sets?since the origin of the theory. Due to the structure of Fuzzy Sets the first impression that many people have is that Fuzzy Sets are the distribution of a probability. Recent developments of many theories of uncertainty measures (belief functions, possibility and fuzzy measures, capacities) can make also think that a Fuzzy Set is the distribution of an uncertainty measure. Other problems arising inside the theory of Fuzzy Sets...

On the structure of continuous uninorms

Paweł Drygaś (2007)

Kybernetika

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangular norms and conorms. We ask about properties of increasing, associative, continuous binary operation U in the unit interval with the neutral element e [ 0 , 1 ] . If operation U is continuous, then e = 0 or e = 1 . So, we consider operations which are continuous in the open unit square. As a result every associative, increasing binary operation with the neutral element e ( 0 , 1 ) , which is continuous in the open unit square may be given in [ 0 , 1 ) 2 ...

On the structure of numerical event spaces

Gerhard Dorfer, Dietmar W. Dorninger, Helmut Länger (2010)

Kybernetika

The probability p ( s ) of the occurrence of an event pertaining to a physical system which is observed in different states s determines a function p from the set S of states of the system to [ 0 , 1 ] . The function p is called a numerical event or multidimensional probability. When appropriately structured, sets P of numerical events form so-called algebras of S -probabilities. Their main feature is that they are orthomodular partially ordered sets of functions p with an inherent full set of states. A classical...

Currently displaying 241 – 260 of 371