Homogeneous permutations.
The notion of free group is defined, a relatively wide collection of groups which enable infinite set summation (called commutative -group), is introduced. Commutative -groups are studied from the set-theoretical point of view and from the point of view of free groups. Commutativity of the operator which is a special kind of inverse limit and factorization, is proved. Tensor product is defined, commutativity of direct product (also a free group construction and tensor product) with the special...
Homology functor in the spirit of the AST is defined, its basic properties are studied. Eilenberg-Steenrod axioms for this functor are formulated and established.
The plane can be covered by n + 2 clouds iff .
We show that assuming the consistency of a supercompact cardinal with a measurable cardinal above it, it is possible for to be measurable and to carry exactly τ normal measures, where is any regular cardinal. This contrasts with the fact that assuming AD + DC, is measurable and carries exactly three normal measures. Our proof uses the methods of [6], along with a folklore technique and a new method due to James Cummings.
Let X be a Polish space, and let be a sequence of hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether is a true subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true .
We present a new forcing notion combining diagonal supercompact Prikry forcing with interleaved extender based forcing. We start with a supercompact cardinal κ. In the final model the cofinality of κ is ω, the singular cardinal hypothesis fails at κ, and GCH holds below κ. Moreover we define a scale at κ which has a stationary set of bad points in the ground model.
Since the common approach to defining membership functions of fuzzy numbers is rather subjective, another, more objective method is proposed. It is applicable in situations where two models, say and , share the same uncertain input parameter . Model is used to assess the fuzziness of , whereas the goal is to assess the fuzziness of the -dependent output of model . Simple examples are presented to illustrate the proposed approach.
We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?