Displaying 21 – 40 of 173

Showing per page

The Banach-Tarski paradox for the hyperbolic plane (II)

Jan Mycielski, Grzegorz Tomkowicz (2013)

Fundamenta Mathematicae

The second author found a gap in the proof of the main theorem in [J. Mycielski, Fund. Math. 132 (1989), 143-149]. Here we fill that gap and add some remarks about the geometry of the hyperbolic plane ℍ².

The cancellation law for pseudo-convolution

Andrea Stupňanová (2005)

Kybernetika

Cancellation law for pseudo-convolutions based on triangular norms is discussed. In more details, the cases of extremal t-norms T M and T D , of continuous Archimedean t-norms, and of general continuous t-norms are investigated. Several examples are included.

The combinatorics of reasonable ultrafilters

Saharon Shelah (2006)

Fundamenta Mathematicae

We are interested in generalizing part of the theory of ultrafilters on ω to larger cardinals. Here we set the scene for further investigations introducing properties of ultrafilters in strong sense dual to being normal.

The consistency of 𝔟 = κ and 𝔰 = κ⁺

Vera Fischer, Juris Steprāns (2008)

Fundamenta Mathematicae

Using finite support iteration of ccc partial orders we provide a model of 𝔟 = κ < 𝔰 = κ⁺ for κ an arbitrary regular, uncountable cardinal.

The consistency strength of the tree property at the double successor of a measurable cardina

Natasha Dobrinen, Sy-David Friedman (2010)

Fundamenta Mathematicae

The Main Theorem is the equiconsistency of the following two statements: (1) κ is a measurable cardinal and the tree property holds at κ⁺⁺; (2) κ is a weakly compact hypermeasurable cardinal. From the proof of the Main Theorem, two internal consistency results follow: If there is a weakly compact hypermeasurable cardinal and a measurable cardinal far enough above it, then there is an inner model in which there is a proper class of measurable cardinals, and in which the tree property holds at the...

The covering property for σ-ideals of compact, sets

Carlos Uzcátegui (1992)

Fundamenta Mathematicae

The covering property for σ-ideals of compact sets is an abstract version of the classical perfect set theorem for analytic sets. We will study its consequences using as a paradigm the σ-ideal of countable closed subsets of 2 ω .

Currently displaying 21 – 40 of 173