Displaying 521 – 540 of 2138

Showing per page

Countably metacompact spaces in the constructible universe

Paul Szeptycki (1993)

Fundamenta Mathematicae

We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a G δ . In addition some nonperfect spaces with σ-disjoint bases are constructed.

Covering locally compact groups by less than 2 ω many translates of a compact nullset

Márton Elekes, Árpád Tóth (2007)

Fundamenta Mathematicae

Gruenhage asked if it was possible to cover the real line by less than continuum many translates of a compact nullset. Under the Continuum Hypothesis the answer is obviously negative. Elekes and Stepr mans gave an affirmative answer by showing that if C E K is the well known compact nullset considered first by Erdős and Kakutani then ℝ can be covered by cof() many translates of C E K . As this set has no analogue in more general groups, it was asked by Elekes and Stepr mans whether such a result holds for...

Covering Property Axiom C P A c u b e and its consequences

Krzysztof Ciesielski, Janusz Pawlikowski (2003)

Fundamenta Mathematicae

We formulate a Covering Property Axiom C P A c u b e , which holds in the iterated perfect set model, and show that it implies easily the following facts. (a) For every S ⊂ ℝ of cardinality continuum there exists a uniformly continuous function g: ℝ → ℝ with g[S] = [0,1]. (b) If S ⊂ ℝ is either perfectly meager or universally null then S has cardinality less than . (c) cof() = ω₁ < , i.e., the cofinality of the measure ideal is ω₁. (d) For every uniformly bounded sequence f n < ω of Borel functions there are sequences:...

Covering the plane with sprays

James H. Schmerl (2010)

Fundamenta Mathematicae

For any three noncollinear points c₀,c₁,c₂ ∈ ℝ², there are sprays S₀,S₁,S₂ centered at c₀,c₁,c₂ that cover ℝ². This improves the result of de la Vega in which c₀,c₁,c₂ were required to be the vertices of an equilateral triangle.

Covering the real line with translates of a zero-dimensional compact set

András Máthé (2011)

Fundamenta Mathematicae

We construct a compact set C of Hausdorff dimension zero such that cof(𝒩) many translates of C cover the real line. Hence it is consistent with ZFC that less than continuum many translates of a zero-dimensional compact set can cover the real line. This answers a question of Dan Mauldin.

Covering Σ ξ 0 -generated ideals by Π ξ 0 sets

Tamás Mátrai (2007)

Commentationes Mathematicae Universitatis Carolinae

We develop the theory of topological Hurewicz test pairs: a concept which allows us to distinguish the classes of the Borel hierarchy by Baire category in a suitable topology. As an application we show that for every Π ξ 0 and not Σ ξ 0 subset P of a Polish space X there is a σ -ideal 2 X such that P but for every Σ ξ 0 set B P there is a Π ξ 0 set B ' P satisfying B B ' . We also discuss several other results and problems related to ideal generation and Hurewicz test pairs.

Covering ω ω by special Cantor sets

Gary Gruenhage, Ronnie Levy (2002)

Commentationes Mathematicae Universitatis Carolinae

This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space ω ω of irrationals, or certain of its subspaces. In particular, given f ω ( ω { 0 } ) , we consider compact sets of the form i ω B i , where | B i | = f ( i ) for all, or for infinitely many, i . We also consider “ n -splitting” compact sets, i.e., compact sets K such that for any f K and i ω , | { g ( i ) : g K , g i = f i } | = n .

Coverings and dimensions in infinite profinite groups

Peter Maga (2013)

Open Mathematics

Answering a question of Miklós Abért, we prove that an infinite profinite group cannot be the union of less than continuum many translates of a compact subset of box dimension less than 1. Furthermore, we show that it is consistent with the axioms of set theory that in any infinite profinite group there exists a compact subset of Hausdorff dimension 0 such that one can cover the group by less than continuum many translates of it.

Cut properties of resemblance

Vladimir Janiš, Magdaléna Renčová, Branimir Šešelja, Andreja Tepavčević (2010)

Kybernetika

The resemblance relation is used to reflect some real life situations for which a fuzzy equivalence is not suitable. We study the properties of cuts for such relations. In the case of a resemblance on a real line E we show that it determines a special family of crisp functions closely connected to its cut relations. Conversely, we present conditions which should be satisfied by a collection of real functions in E in order that this collection determines a resemblance relation.

Cuts of real classes

Martin Kalina, Pavol Zlatoš (1989)

Commentationes Mathematicae Universitatis Carolinae

Decidability and definability results related to the elementary theory of ordinal multiplication

Alexis Bès (2002)

Fundamenta Mathematicae

The elementary theory of ⟨α;×⟩, where α is an ordinal and × denotes ordinal multiplication, is decidable if and only if α < ω ω . Moreover if | r and | l respectively denote the right- and left-hand divisibility relation, we show that Th ω ω ξ ; | r and Th ω ξ ; | l are decidable for every ordinal ξ. Further related definability results are also presented.

Decomposing Baire class 1 functions into continuous functions

Saharon Shelah, Juris Steprans (1994)

Fundamenta Mathematicae

It is shown to be consistent that every function of first Baire class can be decomposed into 1 continuous functions yet the least cardinal of a dominating family in ω ω is 2 . The model used in the one obtained by adding ω 2 Miller reals to a model of the Continuum Hypothesis.

Currently displaying 521 – 540 of 2138