Displaying 781 – 800 of 2138

Showing per page

Generating countable sets of surjective functions

J. D. Mitchell, Y. Péresse (2011)

Fundamenta Mathematicae

We prove that any countable set of surjective functions on an infinite set of cardinality ℵₙ with n ∈ ℕ can be generated by at most n²/2 + 9n/2 + 7 surjective functions of the same set; and there exist n²/2 + 9n/2 + 7 surjective functions that cannot be generated by any smaller number of surjections. We also present several analogous results for other classical infinite transformation semigroups such as the injective functions, the Baer-Levi semigroups, and the Schützenberger monoids.

Generating methods for principal topologies on bounded lattices

Funda Karaçal, Ümit Ertuğrul, M. Nesibe Kesicioğlu (2021)

Kybernetika

In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.

Generation of multi-dimensional aggregation functions.

Margalida Mas Grimalt, Gaspar Mayor Forteza, Jaume Suñer, Joan Torrens (1998)

Mathware and Soft Computing

In this paper we study two ways of generating multi-dimensional aggregation functions. First of all we obtain multi-dimensional OWA operators in two different ways, one of them through quantifiers and the other through sequences. In the first case, we see that all the operators we obtain are multi-dimensional aggregation functions. We then characterize the multi-dimensional aggregation functions that are generated by quantifiers. In the second case, we characterize the sequences that provide multi-dimensional...

Generic extensions of models of ZFC

Lev Bukovský (2017)

Commentationes Mathematicae Universitatis Carolinae

The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35–46, saying that for models M N of ZFC with same ordinals, the condition A p r M , N ( κ ) implies that N is a κ -C.C. generic extension of M .

Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

Ramalingam Sriraman, Asha Nedunchezhiyan (2022)

Kybernetika

In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the n -dimensional Clifford-valued neural network into 2 m n -dimensional real-valued counterparts in order to solve the noncommutativity...

Goldstern–Judah–Shelah preservation theorem for countable support iterations

Miroslav Repický (1994)

Fundamenta Mathematicae

[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. [3] D. H. Fremlin, Cichoń’s diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp. [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362. [5] H....

Graded sets, points and numbers.

José A. Herencia (1998)

Mathware and Soft Computing

The basic tool considered in this paper is the so-called graded set, defined on the analogy of the family of α-cuts of a fuzzy set. It is also considered the corresponding extensions of the concepts of a point and of a real number (again on the analogy of the fuzzy case). These new graded concepts avoid the disadvantages pointed out by Gerla (for the fuzzy points) and by Kaleva and Seikkala (for the convergence of sequences of fuzzy numbers).

Guessing clubs in the generalized club filter

Bernhard König, Paul Larson, Yasuo Yoshinobu (2007)

Fundamenta Mathematicae

We present principles for guessing clubs in the generalized club filter on κ λ . These principles are shown to be weaker than classical diamond principles but often serve as sufficient substitutes. One application is a new construction of a λ⁺-Suslin-tree using assumptions different from previous constructions. The other application partly solves open problems regarding the cofinality of reflection points for stationary subsets of [ λ ] .

Haar null and non-dominating sets

Sławomir Solecki (2001)

Fundamenta Mathematicae

We study the σ-ideal of Haar null sets on Polish groups. It is shown that on a non-locally compact Polish group with an invariant metric this σ-ideal is closely related, in a precise sense, to the σ-ideal of non-dominating subsets of ω ω . Among other consequences, this result implies that the family of closed Haar null sets on a Polish group with an invariant metric is Borel in the Effros Borel structure if, and only if, the group is locally compact. This answers a question of Kechris. We also obtain...

Hausdorff gaps and towers in 𝓟(ω)/Fin

Piotr Borodulin-Nadzieja, David Chodounský (2015)

Fundamenta Mathematicae

We define and study two classes of uncountable ⊆*-chains: Hausdorff towers and Suslin towers. We discuss their existence in various models of set theory. Some of the results and methods are used to provide examples of indestructible gaps not equivalent to a Hausdorff gap. We also indicate possible ways of developing a structure theory for towers based on classification of their Tukey types.

Currently displaying 781 – 800 of 2138