Mehrsortige logische Systeme mit unendlich langen Formeln I.
Using an inductive definition of normal terms of the theory of Cartesian Closed Categories with a given graph of distinguished morphisms, we give a reduction free proof of the decidability of this theory. This inductive definition enables us to show via functional completeness that extensions of such a theory by new constants (“indeterminates”) are conservative.
The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained.
We describe a sequent calculus μLJ with primitives for inductive and coinductive datatypes and equip it with reduction rules allowing a sound translation of Gödel’s system T. We introduce the notion of a μ-closed category, relying on a uniform interpretation of open μLJ formulas as strong functors. We show that any μ-closed category is a sound model for μLJ. We then turn to the construction of a concrete μ-closed category based on Hyland-Ong game semantics. The model relies on three main ingredients:...
We define an equivalent variant of the Gentzen sequent calculus . In weakenings or contractions can be performed in parallel. This modification allows us to interpret a symmetrical system of mix elimination rules by a finite rewriting system; the termination of this rewriting system can be machine checked. We give also a self-contained strong normalization proof by structural induction. We give another strong normalization proof by a strictly monotone subrecursive interpretation; this interpretation...