On a certain mapping on the set with orthogonality
If element of a lattice effect algebra is central, then the interval is a lattice effect algebra with the new top element and with inherited partial binary operation . It is a known fact that if the set of central elements of is an atomic Boolean algebra and the supremum of all atoms of in equals to the top element of , then is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether is a bifull sublattice...
In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space is complete if and only if there exists a -additive state on , the orthomodular poset of complete-cocomplete subspaces of . We then consider the problem of whether every state on , the class of splitting subspaces of , can be extended to a Hilbertian state on ; we show that for the dense hyperplane (of a separable Hilbert space) constructed by P. Pták and...
The notion of a joint distribution in -finite measures of observables of a quantum logic defined on some system of -independent Boolean sub--algebras of a Boolean -algebra is studied. In the present first part of the paper the author studies a joint distribution of compatible observables. It is shown that it may exists, although a joint obsevable of compatible observables need not exist.
This paper i a continuation of the first part under the same title. The author studies a joint distribution in -finite measures for noncompatible observables of a quantum logic defined on some system of -independent Boolean sub--algebras of a Boolean -algebra. We present some necessary and sufficient conditions fot the existence of a joint distribution. In particular, it is shown that an arbitrary system of obsevables has a joint distribution in a measure iff it may be embedded into a system...
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
It is well known that the fuzzy sets theory can be successfully used in quantum models ([5, 26]). In this paper we give first a review of recent development in the probability theory on tribes and their generalizations – multivalued (MV)-algebras. Secondly we show some applications of the described method to develop probability theory on IF-events.
It is shown that for any quantum logic one can find a concrete logic and a surjective homomorphism from onto such that maps the centre of onto the centre of . Moreover, one can ensure that each finite set of compatible elements in is the image of a compatible subset of . This result is “best possible” - let a logic be the homomorphic image of a concrete logic under a homomorphism such that, if is a finite subset of the pre-image of a compatible subset of , then is compatible....