Displaying 401 – 420 of 849

Showing per page

The NP-completeness of automorphic colorings

Giuseppe Mazzuoccolo (2010)

Discussiones Mathematicae Graph Theory

Given a graph G, an automorphic edge(vertex)-coloring of G is a proper edge(vertex)-coloring such that each automorphism of the graph preserves the coloring. The automorphic chromatic index (number) is the least integer k for which G admits an automorphic edge(vertex)-coloring with k colors. We show that it is NP-complete to determine the automorphic chromatic index and the automorphic chromatic number of an arbitrary graph.

The number of complete exceptional sequences for a Dynkin algebra

Mustafa Obaid, Khalid Nauman, Wafa S. M. Al-Shammakh, Wafaa Fakieh, Claus Michael Ringel (2013)

Colloquium Mathematicae

The Dynkin algebras are the hereditary artin algebras of finite representation type. The paper determines the number of complete exceptional sequences for any Dynkin algebra. Since the complete exceptional sequences for a Dynkin algebra of Dynkin type Δ correspond bijectively to the maximal chains in the lattice of non-crossing partitions of type Δ, the calculations presented here may also be considered as a categorification of the corresponding result for non-crossing partitions.

Currently displaying 401 – 420 of 849