-locally connected graphs and their upper embeddability
Nanonetwork is defined as a mathematical model of nanosize objects with biological, physical and chemical attributes, which are interconnected within certain dynamical process. To demonstrate the potentials of this modeling approach for quantitative study of complexity at nanoscale, in this survey, we consider three kinds of nanonetworks: Genes of a yeast are connected by weighted links corresponding to their coexpression along the cell cycle; Gold nanoparticles, arranged on a substrate, are linked...
n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.
The Hopf algebra of word-quasi-symmetric functions (), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on . This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret as a convolution algebra of linear endomorphisms of quasi-shuffle...
A planar Eulerian triangulation is a simple plane graph in which each face is a triangle and each vertex has even degree. Such objects are known to be equivalent to spherical Latin bitrades. (A Latin bitrade describes the difference between two Latin squares of the same order.) We give a classification in the near-regular case when each vertex is of degree or (which we call a near-homogeneous spherical Latin bitrade, or NHSLB). The classification demonstrates that any NHSLB is equal to two graphs...
Chartrand et al. (2004) have given an upper bound for the nearly antipodal chromatic number as for and have found the exact value of for . Here we determine the exact values of for . They are for and for . The exact value of the radio antipodal number for the path of order has been determined by Khennoufa and Togni in 2005 as for and for . Although the value of determined there is correct, we found a mistake in the proof of the lower bound when (Theorem ). However,...
We describe two constructions of (very) dense graphs which are edge disjoint unions of large induced matchings. The first construction exhibits graphs on vertices with edges, which can be decomposed into pairwise disjoint induced matchings, each of size . The second construction provides a covering of all edges of the complete graph by two graphs, each being the edge disjoint union of at most induced matchings, where . This disproves (in a strong form) a conjecture of Meshulam, substantially...
We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2). We prove this scaling result in the model of the lattice with random edge-lengths and in the euclidean model.