Loading [MathJax]/extensions/MathZoom.js
In this paper we extend the notion of weak degree domination in graphs to hypergraphs and find relationships among the domination number, the weak edge-degree domination number, the independent domination number and the independence number of a given hypergraph.
By Ulam's conjecture every finite graph G can be reconstructed from its deck of vertex deleted subgraphs. The conjecture is still open, but many special cases have been settled. In particular, one can reconstruct Cartesian products. We consider the case of k-vertex deleted subgraphs of Cartesian products, and prove that one can decide whether a graph H is a k-vertex deleted subgraph of a Cartesian product G with at least k+1 prime factors on at least k+1 vertices each, and that H uniquely determines...
Let G = (V,E) be a graph and f be a function f:V → 0,1,2. A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f’: V → 0,1,2 defined by f’(u) = 1, f’(v) = f(v)-1 and f’(w) = f(w) if w ∈ V-u,v, has no undefended vertex. The weight of f is . The weak Roman domination number,...
For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order...
We demonstrate that every Vietoris continuous selection for the hyperspace of at most 3-point subsets implies the existence of a continuous selection for the hyperspace of at most 4-point subsets. However, in general, we do not know if such ``extensions'' are possible for hyperspaces of sets of other cardinalities. In particular, we do not know if the hyperspace of at most 3-point subsets has a continuous selection provided the hyperspace of at most 2-point subsets has a continuous selection.
A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G) is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G), there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G)−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality...
A dominating set is a weakly connected dominating set in if the subgraph weakly induced by is connected, where is the set of all edges having at least one vertex in . Weakly connected domination number of a graph is the minimum cardinality among all weakly connected dominating sets in . A graph is said to be weakly connected domination stable or just -stable if for every edge belonging to the complement of We provide a constructive characterization of weakly connected domination...
A set D of vertices in a graph G = (V,E) is a weakly connected dominating set of G if D is dominating in G and the subgraph weakly induced by D is connected. The weakly connected domination number of G is the minimum cardinality of a weakly connected dominating set of G. The weakly connected domination subdivision number of a connected graph G is the minimum number of edges that must be subdivided (where each egde can be subdivided at most once) in order to increase the weakly connected domination...
For a hereditary property let denote the number of forbidden subgraphs contained in G. A graph G is said to be weakly -saturated, if G has the property and there is a sequence of edges of G̅, say , such that the chain of graphs has the following property: , 0 ≤ i ≤ l-1.
In this paper we shall investigate some properties of weakly saturated graphs. We will find upper bound for the minimum number of edges of weakly ₖ-saturated graphs of order n. We shall determine the number wsat(n,) for some...
A lattice in Euclidean d-space is called well-rounded if it contains d linearly independent vectors of minimal length. This class of lattices is important for various questions, including sphere packing or homology computations. The task of enumerating well-rounded sublattices of a given lattice is of interest already in dimension 2, and has recently been treated by several authors. In this paper, we analyse the question more closely in the spirit of earlier work on similar sublattices and coincidence...
Currently displaying 1 –
20 of
57