Displaying 761 – 780 of 2016

Showing per page

Fully degenerate poly-Bernoulli numbers and polynomials

Taekyun Kim, Dae San Kim, Jong-Jin Seo (2016)

Open Mathematics

In this paper, we introduce the new fully degenerate poly-Bernoulli numbers and polynomials and inverstigate some properties of these polynomials and numbers. From our properties, we derive some identities for the fully degenerate poly-Bernoulli numbers and polynomials.

General numeration I. Gauged schemes.

D. W. Dubois (1982)

Revista Matemática Hispanoamericana

The paper deals with special partitions of whole numbers in the following form: given a sequence of pairs {[Gi;Di]} of positive integers in which the Gi form a strictly increasing sequence, sums of the form ∑niGi, with 0 ≤ ni ≤ Di, are considered. The correspondence[nk ... n0] → ∑i≤k niGidefines then a mapping α from a set M of numerals, called Neugebauer symbols, satisfying 0 ≤ ni ≤ Di, into the set W of all non-negative integers. In M, initial zeros are supressed and M is ordered in the usual...

Currently displaying 761 – 780 of 2016