Towards a human proof of Gessel's conjecture.
In this paper we find a one-to-one correspondence between transitive relations and partial orders. On the basis of this correspondence we deduce the recurrence formula for enumeration of their numbers. We also determine the number of all transitive relations on an arbitrary -element set up to .
We introduce natural generalizations of two well-known dynamical systems, the Sand Piles Model and the Brylawski's model. We describe their order structure, their reachable configuration's characterization, their fixed points and their maximal and minimal length's chains. Finally, we present an induced model generating the set of unimodal sequences which amongst other corollaries, implies that this set is equipped with a lattice structure.