Displaying 341 – 360 of 1135

Showing per page

Extremely primitive groups and linear spaces

Haiyan Guan, Shenglin Zhou (2016)

Czechoslovak Mathematical Journal

A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let 𝒮 be a nontrivial finite regular linear space and G Aut ( 𝒮 ) . Suppose that G is extremely primitive on points and let rank ( G ) be the rank of G on points. We prove that rank ( G ) 4 with few exceptions. Moreover, we show that Soc ( G ) is neither a sporadic group nor an alternating group, and G = PSL ( 2 , q ) with q + 1 a Fermat prime if Soc ( G ) is a finite classical simple group.

Facetas del politopo de recubrimiento con coeficientes en {0, 1, 2, 3}.

Miguel Sánchez García, M.ª Inés Sobrón Fernández, M.ª Candelaria Espinel Febles (1992)

Trabajos de Investigación Operativa

En dos artículos, publicados en 1989, Balas y Ng dan una metodología para construir facetas del politopo de recubrimiento con coeficientes en {0, 1, 2}. Siguiendo esta metodología, en el presente artículo decimos cómo se contruyen facetas de dicho politopo con coeficientes en {0, 1, 2, 3}.

Factoring an odd abelian group by lacunary cyclic subsets

Sándor Szabó (2010)

Discussiones Mathematicae - General Algebra and Applications

It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.

Currently displaying 341 – 360 of 1135