Displaying 21 – 40 of 91

Showing per page

Combinatorial lemmas for polyhedrons

Adam Idzik, Konstanty Junosza-Szaniawski (2005)

Discussiones Mathematicae Graph Theory

We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.

Combinatorial lemmas for polyhedrons I

Adam Idzik, Konstanty Junosza-Szaniawski (2006)

Discussiones Mathematicae Graph Theory

We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.

Commutative subloop-free loops

Martin Beaudry, Louis Marchand (2011)

Commentationes Mathematicae Universitatis Carolinae

We describe, in a constructive way, a family of commutative loops of odd order, n 7 , which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group 𝒜 n .

Complete arcs arising from a generalization of the Hermitian curve

Herivelto Borges, Beatriz Motta, Fernando Torres (2014)

Acta Arithmetica

We investigate complete arcs of degree greater than two, in projective planes over finite fields, arising from the set of rational points of a generalization of the Hermitian curve. The degree of the arcs is closely related to the number of rational points of a class of Artin-Schreier curves, which is calculated by using exponential sums via Coulter's approach. We also single out some examples of maximal curves.

Complex Hadamard Matrices contained in a Bose–Mesner algebra

Takuya Ikuta, Akihiro Munemasa (2015)

Special Matrices

Acomplex Hadamard matrix is a square matrix H with complex entries of absolute value 1 satisfying HH* = nI, where * stands for the Hermitian transpose and I is the identity matrix of order n. In this paper, we first determine the image of a certain rational map from the d-dimensional complex projective space to Cd(d+1)/2. Applying this result with d = 3, we give constructions of complex Hadamard matrices, and more generally, type-II matrices, in the Bose–Mesner algebra of a certain 3-class symmetric...

Currently displaying 21 – 40 of 91