Displaying 81 – 100 of 123

Showing per page

On-line Ramsey theory.

Grytczuk, J.A., Hałuszczak, M., Kierstead, H.A. (2004)

The Electronic Journal of Combinatorics [electronic only]

Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host, Bryna Kra (2008)

Bulletin de la Société Mathématique de France

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

Partial unconditionality of weakly null sequences.

Jordi López Abad, Stevo Todorcevic (2006)

RACSAM

We survey a combinatorial framework for studying subsequences of a given sequence in a Banach space, with particular emphasis on weakly-null sequences. We base our presentation on the crucial notion of barrier introduced long time ago by Nash-Williams. In fact, one of the purposes of this survey is to isolate the importance of studying mappings defined on barriers as a crucial step towards solving a given problem that involves sequences in Banach spaces. We focus our study on various forms of ?partial...

Planar Ramsey numbers

Izolda Gorgol (2005)

Discussiones Mathematicae Graph Theory

The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.

Ramsey partitions and proximity data structures

Manor Mendel, Assaf Naor (2007)

Journal of the European Mathematical Society

This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion.We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky theorem,...

Ramseyan ultrafilters

Lorenz Halbeisen (2001)

Fundamenta Mathematicae

We investigate families of partitions of ω which are related to special coideals, so-called happy families, and give a dual form of Ramsey ultrafilters in terms of partitions. The combinatorial properties of these partition-ultrafilters, which we call Ramseyan ultrafilters, are similar to those of Ramsey ultrafilters. For example it will be shown that dual Mathias forcing restricted to a Ramseyan ultrafilter has the same features as Mathias forcing restricted to a Ramsey ultrafilter. Further we...

Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces

Jiří Matoušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( X , ρ ) , ( Y , σ ) be metric spaces and f : X Y an injective mapping. We put f L i p = sup { σ ( f ( x ) , f ( y ) ) / ρ ( x , y ) ; x , y X , x y } , and dist ( f ) = f L i p . f - 1 L i p (the distortion of the mapping f ). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let X be a finite metric space, and let ε > 0 , K be given numbers. Then there exists a finite metric space Y , such that for every mapping f : Y Z ( Z arbitrary metric space) with dist ( f ) < K one can find a mapping g : X Y , such that both the mappings g and f | g ( X ) have distortion at...

Regular methods of summability in some locally convex spaces

Costas Poulios (2009)

Commentationes Mathematicae Universitatis Carolinae

Suppose that X is a Fréchet space, a i j is a regular method of summability and ( x i ) is a bounded sequence in X . We prove that there exists a subsequence ( y i ) of ( x i ) such that: either (a) all the subsequences of ( y i ) are summable to a common limit with respect to a i j ; or (b) no subsequence of ( y i ) is summable with respect to a i j . This result generalizes the Erdös-Magidor theorem which refers to summability of bounded sequences in Banach spaces. We also show that two analogous results for some ω 1 -locally convex spaces...

Currently displaying 81 – 100 of 123