Displaying 181 – 200 of 595

Showing per page

Diamond representations of 𝔰𝔩 ( n )

Didier Arnal, Nadia Bel Baraka, Norman J. Wildberger (2006)

Annales mathématiques Blaise Pascal

In [6], there is a graphic description of any irreducible, finite dimensional 𝔰𝔩 ( 3 ) module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional 𝒰 q ( 𝔰𝔩 ( 3 ) ) -modules.In the present work, we generalize this construction to 𝔰𝔩 ( n ) . We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of 𝔰𝔩 ( n ) . The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux....

Dimensions of components of tensor products of representations of linear groups with applications to Beurling-Fourier algebras

Benoît Collins, Hun Hee Lee, Piotr Śniady (2014)

Studia Mathematica

We give universal upper bounds on the relative dimensions of isotypic components of a tensor product of representations of the linear group GL(n) and universal upper bounds on the relative dimensions of irreducible components of a tensor product of representations of the special linear group SL(n). This problem is motivated by harmonic analysis problems, and we give some applications to the theory of Beurling-Fourier algebras.

Discrete excursions.

Bousquet-Mélou, Mireille (2006)

Séminaire Lotharingien de Combinatoire [electronic only]

Divided differences and symmetric functions

Wenchang Chu (1999)

Bollettino dell'Unione Matematica Italiana

L'operatore di differenze multivariate è utilizzato per stabilire varie formule di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame con le identità del «termine costante».

Double Schubert polynomials and degeneracy loci for the classical groups

Andrew Kresch, Harry Tamvakis (2002)

Annales de l’institut Fourier

We propose a theory of double Schubert polynomials P w ( X , Y ) for the Lie types B , C , D which naturally extends the family of Lascoux and Schützenberger in type A . These polynomials satisfy positivity, orthogonality and stability properties, and represent the classes of Schubert varieties and degeneracy loci of vector bundles. When w is a maximal Grassmannian element of the Weyl group, P w ( X , Y ) can be expressed in terms of Schur-type determinants and Pfaffians, in analogy with the type A formula of Kempf and Laksov....

Edge-Transitivity of Cayley Graphs Generated by Transpositions

Ashwin Ganesan (2016)

Discussiones Mathematicae Graph Theory

Let S be a set of transpositions generating the symmetric group Sn (n ≥ 5). The transposition graph of S is defined to be the graph with vertex set {1, . . . , n}, and with vertices i and j being adjacent in T(S) whenever (i, j) ∈ S. In the present note, it is proved that two transposition graphs are isomorphic if and only if the corresponding two Cayley graphs are isomorphic. It is also proved that the transposition graph T(S) is edge-transitive if and only if the Cayley graph Cay(Sn, S) is edge-transitive....

Entropy of Schur–Weyl measures

Sevak Mkrtchyan (2014)

Annales de l'I.H.P. Probabilités et statistiques

Relative dimensions of isotypic components of N th order tensor representations of the symmetric group on n letters give a Plancherel-type measure on the space of Young diagrams with n cells and at most N rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when N n converges to a constant. The main...

Currently displaying 181 – 200 of 595