Regular lattices
In this paper, we study relationships between among (fuzzy) Boolean ideals, (fuzzy) Gödel ideals, (fuzzy) implicative filters and (fuzzy) Boolean filters in BL-algebras. In [9], there is an example which shows that a Gödel ideal may not be a Boolean ideal, we show this example is not true and in the following we prove that the notions of (fuzzy) Gödel ideals and (fuzzy) Boolean ideals in BL-algebras coincide.
The aim of this paper is to present relations between Goldie, hollow and Kurosh-Ore dimensions of semimodular lattices. Relations between Goldie and Kurosh-Ore dimensions of modular lattices were studied by Grzeszczuk, Okiński and Puczyłowski.
In this paper we shall study a notion of relative annihilator-preserving congruence relation and relative annihilator-preserving homomorphism in the class of bounded distributive semilattices. We shall give a topological characterization of this class of semilattice homomorphisms. We shall prove that the semilattice congruences that are associated with filters are exactly the relative annihilator-preserving congruence relations.
In this paper, the authors introduce the notion of conditional expectation of an observable on a logic with respect to a sublogic, in a state , relative to an element of the logic. This conditional expectation is an analogue of the expectation of an integrable function on a probability space.