Una nota sulla nozione di molto maggiore
2000 Mathematics Subject Classification: 06A06, 54E15An ordered pair X(R) = ( X, R ) consisting of a nonvoid set X and a nonvoid family R of binary relations on X is called a relator space. Relator spaces are straightforward generalizations not only of uniform spaces, but also of ordered sets. Therefore, in a relator space we can naturally define not only some topological notions, but also some order theoretic ones. It turns out that these two, apparently quite different, types of notions are closely...
Let be a unital -ring. For any we define the weighted -core inverse and the weighted dual -core inverse, extending the -core inverse and the dual -core inverse, respectively. An element has a weighted -core inverse with the weight if there exists some such that , and . Dually, an element has a weighted dual -core inverse with the weight if there exists some such that , and . Several characterizations of weighted -core invertible and weighted dual -core invertible...
The concept of -ideals in posets is introduced. Several properties of -ideals in -distributive posets are studied. Characterization of prime ideals to be -ideals in -distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal of a -distributive poset is non-dense, then is an -ideal. Moreover, it is shown that the set of all -ideals of a poset with forms a complete lattice. A result analogous to separation theorem for finite -distributive...
In this paper, we generalize the notion of supremum and infimum in a poset.