Facteurs et plans. II : plans quasi-complets
Whereas the Dedekind-MacNeille completion D(P) of a poset P is the minimal lattice L such that every element of L is a join of elements of P, the minimal strict completion D(P)∗ is the minimal lattice L such that the poset of join-irreducible elements of L is isomorphic to P. (These two completions are the same if every element of P is join-irreducible). In this paper we study lattices which are minimal strict completions of finite orders. Such lattices are in one-to-one correspondence with finite...
The paper applies some properties of the monotonous operators on the complete lattices to problems of the existence and the construction of the solutions to some fuzzy relational equations, inequations, and their systems, taking a complete lattice for the codomain lattice. The existing solutions are extremal - the least or the greatest, thus we prove some extremal problems related to fuzzy sets (in)equations. Also, some properties of upper-continuous lattices are proved and applied to systems of...