Displaying 181 – 200 of 217

Showing per page

Sheffer operation in ortholattices

Ivan Chajda (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We introduce the concept of Sheffer operation in ortholattices and, more generally, in lattices with antitone involution. By using this, all the fundamental operations of an ortholattice or a lattice with antitone involution are term functions built up from the Sheffer operation. We list axioms characterizing the Sheffer operation in these lattices.

Some problems for measures on non-standard algebraic structures

Maria Gabriella Graziano (2000)

Bollettino dell'Unione Matematica Italiana

Nell'ultimo ventennio tutta una serie di lavori è stata rivolta allo studio delle misure su strutture algebriche più generali delle algebre di Boole, come i poset e i reticoli ortomodulari, le effect algebras, le BCK-algebras. La teoria così ottenuta interessa l'analisi funzionale, il calcolo delle probabilità e la topologia, più recentemente la teoria delle decisioni. Si presentano alcuni risultati relativi a misure su strutture algebriche non-standard analizzando, in particolare, gli aspetti topologici...

Some properties of congurence relations on orthomodular lattices

Gerhard Dorfer (2001)

Discussiones Mathematicae - General Algebra and Applications

In this paper congruences on orthomodular lattices are studied with particular regard to analogies in Boolean algebras. For this reason the lattice of p-ideals (corresponding to the congruence lattice) and the interplay between congruence classes is investigated. From the results adduced there, congruence regularity, uniformity and permutability for orthomodular lattices can be derived easily.

States on basic algebras

Ivan Chajda, Helmut Länger (2017)

Mathematica Bohemica

States on commutative basic algebras were considered in the literature as generalizations of states on MV-algebras. It was a natural question if states exist also on basic algebras which are not commutative. We answer this question in the positive and give several examples of such basic algebras and their states. We prove elementary properties of states on basic algebras. Moreover, we introduce the concept of a state-morphism and characterize it among states. For basic algebras which are the certain...

Symmetric difference on orthomodular lattices and Z 2 -valued states

Milan Matoušek, Pavel Pták (2009)

Commentationes Mathematicae Universitatis Carolinae

The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of Z 2 -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.

The axioms for implication in orthologic

Ivan Chajda (2008)

Czechoslovak Mathematical Journal

We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice.

The exocenter and type decomposition of a generalized pseudoeffect algebra

David J. Foulis, Silvia Pulmannová, Elena Vinceková (2013)

Discussiones Mathematicae - General Algebra and Applications

We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend...

The Role of Halaš Identity in Orthomodular Lattices

Ivan Chajda (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.

The structure of transitive ordered permutation groups

Zhu, Zuo-Tong, Huang Zhenyu (1999)

Czechoslovak Mathematical Journal

We give some necessary and sufficient conditions for transitive l -permutation groups to be 2 -transitive. We also discuss primitive components and give necessary and sufficient conditions for transitive l -permutation groups to be normal-valued.

Currently displaying 181 – 200 of 217