The lattice of bi-numerations of arithmetic. II.
T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the -propositional calculus, denoted by , is introduced in terms of the binary connectives (implication), (standard implication), (conjunction), (disjunction) and the unary ones (negation) and , (generalized Moisil operators). It is proved that belongs to the class of standard systems of implicative...
In this paper we study the prime and maximal spectra of a BL-algebra, proving that the prime spectrum is a compact T 0 topological space and that the maximal spectrum is a compact Hausdorff topological space. We also define and study the reticulation of a BL-algebra.
The aim of this paper is to characterize pairs (L, A), where L is a finite lattice and A a finite algebra, such that the subalgebra lattice of A is isomorphic to L. Next, necessary and sufficient conditions are found for pairs of finite algebras (of possibly distinct types) to have isomorphic subalgebra lattices. Both of these characterizations are particularly simple in the case of distributive subalgebra lattices. We do not restrict our attention to total algebras only, but we consider the more...
We characterize Łukasiewicz tribes, i.e., collections of fuzzy sets that are closed under the standard fuzzy complementation and the Łukasiewicz t-norm with countably many arguments. As a tool, we introduce σ-McNaughton functions as the closure of McNaughton functions under countable MV-algebraic operations. We give a measure-theoretical characterization of σ-complete MV-algebras which are isomorphic to Łukasiewicz tribes.