The search session has expired. Please query the service again.
By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or -distributivity of nearlattices by means of certain properties of annihilators.
In this paper, we introduce the concept of an ideal of a noncommutative dually residuated lattice ordered monoid and we show that congruence relations and certain ideals are in a one-to-one correspondence.
A term operation implication is introduced in a given basic algebra and properties of the implication reduct of are treated. We characterize such implication basic algebras and get congruence properties of the variety of these algebras. A term operation equivalence is introduced later and properties of this operation are described. It is shown how this operation is related with the induced partial order of and, if this partial order is linear, the algebra can be reconstructed by means of...
In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set of all fully indecomposable matrices as a subsemigroup of the semigroup of all Hall matrices over the lattice are given.
The concept of annihilator in lattice was introduced by M. Mandelker. Although annihilators have some properties common with ideals, the set of all annihilators in need not be a lattice. We give the concept of indexed annihilator which generalizes it and we show the basic properties of the lattice of indexed annihilators. Moreover, distributive and modular lattices can be characterized by using of indexed annihilators.
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
In this paper, we study two kinds of combinatorial
objects, generalized integer partitions and tilings of 2D-gons
(hexagons, octagons, decagons, etc.).
We show that the sets of partitions,
ordered with a simple dynamics, have the distributive lattice structure.
Likewise, we show that the set of tilings of a 2D-gon
is the disjoint union of distributive
lattices which we describe.
We also discuss the special case of linear integer
partitions, for which other dynamical models exist.
We study the consequences of assuming on an MV-algebra A that Σnnx exists for each x belonging to A.
Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate multiplicative interior and additive closure operators (mi- and ac-operators) generalizing topological interior and closure operators on such algebras. We describe connections between mi- and ac-operators, and for residuated lattices with Glivenko property we give connections between operators on them and on the residuated...
-algebras endowed with additive closure operators or with its duals-multiplicative interior operators (closure or interior -algebras) were introduced as a non-commutative generalization of topological Boolean algebras. In the paper, the multiplicative interior and additive closure operators on -monoids are introduced as natural generalizations of the multiplicative interior and additive closure operators on -algebras.
Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.
Currently displaying 1 –
20 of
27